Few-Shot Object Detection with Memory Contrastive Proposal Based on Semantic Priors

被引:0
|
作者
Xiao, Linlin [1 ]
Xu, Huahu [1 ]
Xiao, Junsheng [1 ]
Huang, Yuzhe [1 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
关键词
object detection; few-shot learning; semantic fusion; contrastive learning; memory contrastive proposal;
D O I
10.3390/electronics12183835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Few-shot object detection (FSOD) aims to detect objects belonging to novel classes with few training samples. With the small number of novel class samples, the visual information extracted is insufficient to accurately represent the object itself, presenting significant intra-class variance and confusion between classes of similar samples, resulting in large errors in the detection results of the novel class samples. We propose a few-shot object detection framework to achieve effective classification and detection by embedding semantic information and contrastive learning. Firstly, we introduced a semantic fusion (SF) module, which projects semantic spatial information into visual space for interaction, to compensate for the lack of visual information and further enhance the representation of feature information. To further improve the classification performance, we embed the memory contrastive proposal (MCP) module to adjust the distribution of the feature space by calculating the contrastive loss between the class-centered features of previous samples and the current input features to obtain a more discriminative embedding space for better intra-class aggregation and inter-class separation for subsequent classification and detection. Extensive experiments on the PASCAL VOC and MS-COCO datasets show that the performance of our proposed method is effectively improved. Our proposed method improves nAP50 over the baseline model by 4.5% and 3.5%.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Few-shot object detection with semantic enhancement and semantic prototype contrastive learning
    Huang, Lian
    Dai, Shaosheng
    He, Ziqiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [2] FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding
    Sun, Bo
    Li, Banghuai
    Cai, Shengcai
    Yuan, Ye
    Zhang, Chi
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7348 - 7358
  • [3] Mutually Reinforcing Structure with Proposal Contrastive Consistency for Few-Shot Object Detection
    Ma, Tianxue
    Bi, Mingwei
    Zhang, Jian
    Yuan, Wang
    Zhang, Zhizhong
    Xie, Yuan
    Ding, Shouhong
    Ma, Lizhuang
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 400 - 416
  • [4] Few-shot Object Detection with Refined Contrastive Learning
    Shangguan, Zeyu
    Huai, Lian
    Liu, Tong
    Jiang, Xingqun
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 991 - 996
  • [5] Proposal Distribution Calibration for Few-Shot Object Detection
    Liu, Chang
    Li, Bohao
    Shi, Mengnan
    Chen, Xiaozhong
    Ji, Xiangyang
    Ye, Qixiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 8
  • [6] Few-Shot Object Detection with Proposal Balance Refinement
    Kim, Sueyeon
    Nam, Woo-Jeoung
    Lee, Seong-Whan
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4700 - 4707
  • [7] Few-Shot Object Detection via Transfer Learning and Contrastive Reweighting
    Wu, Zhen
    Li, Haowei
    Zhang, Dongyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VII, 2023, 14260 : 78 - 87
  • [8] Memory-Based Contrastive Learning with Optimized Sampling for Incremental Few-Shot Semantic Segmentation
    Zhang, Yuxuan
    Shi, Miaojing
    Su, Taiyi
    Wang, Hanli
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [9] Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection
    Zhu, Chenchen
    Chen, Fangyi
    Ahmed, Uzair
    Shen, Zhiqiang
    Savvides, Marios
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8778 - 8787
  • [10] Automatic Aug-Aware Contrastive Proposal Encoding for Few-Shot Object Detection of Remote Sensing Images
    Ma, Siteng
    Hou, Biao
    Wu, Zitong
    Li, Zhihao
    Guo, Xianpeng
    Ren, Bo
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61