Data-driven framework for warranty claims forecasting with an application for automotive components

被引:1
|
作者
Babakmehr, Mohammad [1 ]
Baumanns, Sascha [2 ]
Chehade, Abdallah [3 ,5 ]
Hochkirchen, Thomas [2 ]
Kalantari, Mahdokht [1 ]
Krivtsov, Vasiliy [1 ,4 ]
Schindler, David [2 ]
机构
[1] Ford Motor Co, Dearborn, MI USA
[2] Ford Res & Innovat Ctr Aachen, Aachen, Germany
[3] Univ Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI USA
[4] Univ Maryland, College Pk, MD USA
[5] Univ Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI 48128 USA
关键词
dissimilarity; forecasting; machine learning; predictive analytics; proportional hazards; reporting delay; warranty data; REGRESSION-MODELS; CUSTOMER-RUSH; RELIABILITY; PREDICTION; PRODUCT; COST;
D O I
10.1002/eng2.12764
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Automakers spend billions of dollars annually towards warranty costs, and warranty reduction is typically high on their priorities. An accurate understanding of warranty performance plays a critical role in controlling and steering the business, and it is of crucial importance to fully understand the actual situation as well as be able to predict future performance, for example, to set up adequate financial reserves or to prioritize improvement actions based on expected forthcoming claims. Data maturation, a major nuisance causing changes in performance metrics with observation time, is one of the factors complicating warranty data analysis and typically leads to over-optimistic conclusions. In this paper, we propose a sequence of steps, decomposing and addressing the main reasons causing data maturation. We first compensate for reporting delay effects using a Cox regression model. For the compensation of heterogeneous build quality, sales delay, and warranty expiration rushes, a constrained quadratic optimization approach is presented, and finally, a sales pattern forecast is provided to properly weigh adjusted individual warranty key performance indicators. The results are shown to dramatically improve prior modeling approaches. Automakers budget for considerable warranty costs, making accurate forecasting vital for financial planning and prioritizing product improvements that lead to reduced costs in future production. This paper presents a data-driven framework for robust warranty forecasting. The framework compensates for reporting delays, heterogeneous build quality, sales delays, and warranty expiration rushes, ultimately improving decision-making and enhancing prior modeling approaches.image
引用
收藏
页数:18
相关论文
共 50 条
  • [21] An integrated data-driven solar wind - CME numerical framework for space weather forecasting
    Narechania, Nishant M.
    Nikolic, Ljubomir
    Freret, Lucie
    De Sterck, Hans
    Groth, Clinton P. T.
    JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2021, 11
  • [22] The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
    Hauswirth, Sandra M.
    Bierkens, Marc F. P.
    Beijk, Vincent
    Wanders, Niko
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2023, 27 (02) : 501 - 517
  • [23] Uncertainty Quantification Analysis of Wind Power: A Data-Driven Monitoring-Forecasting Framework
    Wei, Wei
    Wu, Jiang
    Yu, Yang
    Niu, Tong
    Deng, Xinxin
    IEEE ACCESS, 2021, 9 : 84403 - 84416
  • [24] A dynamic data-driven application simulation framework for contaminant transport problems
    Douglas, C. C.
    Efendiev, Y.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (11) : 1633 - 1646
  • [25] FREAK WAVE FORECASTING: A DATA-DRIVEN APPROACH
    Breunung, Thomas
    Balachandran, Balakumar
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 2, 2022,
  • [26] A technological framework for data-driven IoT systems: Application on landslide monitoring
    Karunarathne, Sivanarayani M.
    Dray, Matthew
    Popov, Lyudmil
    Butler, Matthew
    Pennington, Catherine
    Angelopoulos, Constantinos Marios
    COMPUTER COMMUNICATIONS, 2020, 154 : 298 - 312
  • [27] DATA-DRIVEN TIME PARALLELISM VIA FORECASTING
    Carlberg, Kevin
    Brencher, Lukas
    Haasdonk, Bernard
    Barth, Andrea
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : B466 - B496
  • [28] Data-Driven Adaptive Regularized Risk Forecasting
    Liang, You
    Thavaneswaran, Aerambamoorthy
    Zhu, Zimo
    Thulasiram, Ruppa K.
    Hoque, Md Erfanul
    2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 1296 - 1301
  • [29] Application of signal analysis and data-driven approaches to fault detection and diagnosis in automotive engines
    Namburu, Setu Madhavi
    Chigusa, Shunsuke
    Qiao, Liu
    Azam, Mohammad
    Pattipati, Krishna R.
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 3665 - +
  • [30] A finite mixture model for multiple dependent competing risks with applications of automotive warranty claims data
    Prajapati, Deepak
    Pal, Ayan
    Kundu, Debasis
    STATISTICS AND COMPUTING, 2024, 34 (01)