An Operator Theoretic Approach to the Prime Number Theorem

被引:0
|
作者
Olsen, Jan-Fredrik [1 ]
机构
[1] Lund Univ, Ctr Math Sci, POB 118, SE-22100 Lund, Sweden
关键词
prime number theorem; Tauberian theorems; integral oper-ators;
D O I
10.15407/mag19.01.172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an operator theoretic version of the Wiener-Ikehara Taub e-rian theorem and use it to obtain a short proof of the Prime number theorem that should be accessible to anyone with a basic knowledge of operator the-ory and Fourier analysis.
引用
收藏
页码:172 / 177
页数:6
相关论文
共 50 条
  • [31] PRIME NUMBER THEOREM FOR RANDOM SEQUENCES
    WUNDERLICH, MC
    JOURNAL OF NUMBER THEORY, 1976, 8 (04) : 369 - 371
  • [32] THE ERROR TERM IN THE PRIME NUMBER THEOREM
    Platt, David J.
    Trudgian, Timothy S.
    MATHEMATICS OF COMPUTATION, 2021, 90 (328) : 871 - 881
  • [33] On the prime number theorem for the Selberg class
    J. Kaczorowski
    A. Perelli
    Archiv der Mathematik, 2003, 80 (3) : 255 - 263
  • [35] A VERSION OF THE PARCEVAL THEOREM FOR NUMBER THEORETIC SPECTRUM
    VARICHENKO, LV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1989, 32 (03): : 59 - 61
  • [36] Generalizations of the Erds-Kac Theorem and the Prime Number Theorem
    Wang, Biao
    Wei, Zhining
    Yan, Pan
    Yi, Shaoyun
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023,
  • [37] A formally verified proof of the prime number theorem
    Avigad, Jeremy
    Donnelly, Kevin
    Gray, David
    Raff, Paul
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2008, 9 (01)
  • [38] Remark on the inverse abstract prime number theorem
    D. S. Minenkov
    V. E. Nazaikinskii
    Mathematical Notes, 2016, 100 : 633 - 635
  • [39] ON THE PRIME NUMBER THEOREM FOR A COMPACT RIEMANN SURFACE
    Avdispahic, M.
    Smajlovic, L.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (06) : 1837 - 1845
  • [40] Prime number theorem for regular Toeplitz subshifts
    Fraczek, Krzysztof
    Kanigowski, Adam
    Lemanczyk, Mariusz
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (04) : 1446 - 1473