KEMIM: Knowledge-Enhanced User Multi-Interest Modeling for Recommender Systems

被引:3
|
作者
Yang, Fan [1 ]
Yue, Yong [1 ]
Li, Gangmin [2 ]
Payne, Terry R. [3 ]
Man, Ka Lok [1 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215000, Peoples R China
[2] Univ Bedfordshire, Sch Comp Sci & Technol, Luton LU2 8DL, England
[3] Univ Liverpool, Dept Comp Sci, Liverpool L69 7ZX, England
关键词
Knowledge graphs; Recommender systems; Feature extraction; Predictive models; Semantics; Collaborative filtering; Behavioral sciences; Multi-interest; user modeling; knowledge graph; recommender systems;
D O I
10.1109/ACCESS.2023.3264550
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Researchers typically leverage side information, such as social networks or the knowledge graph, to overcome the sparsity and cold start problem in collaborative filtering. To tackle the limitations of existing user interest modeling, we propose a knowledge-enhanced user multi-interest modeling for recommender systems (KEMIM). First, we utilize the user-item historical interaction as the knowledge graph's head entity to create a user's explicit interests and leverage the relationship path to expand the user's potential interests through connections in the knowledge graph. Second, considering the diversity of a user's interests, we adopt an attention mechanism to learn the user's attention to each historical interaction and each potential interest. Third, we combine the user's attribute features with interests to solve the cold start problem effectively. With the knowledge graph's structural data, KEMIM could describe the features of users at a fine granularity and provide explainable recommendation results to users. In this study, we conduct an in-depth empirical evaluation across three open datasets for two different recommendation tasks: Click-Through rate (CTR) prediction and Top-K recommendation. The experimental findings demonstrate that KEMIM outperforms several state-of-the-art baselines.
引用
收藏
页码:55425 / 55434
页数:10
相关论文
共 50 条
  • [31] Lifelong topic modeling with knowledge-enhanced adversarial network
    Zhang, Xuewen
    Rao, Yanghui
    Li, Qing
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (01): : 219 - 238
  • [32] A multi-agent knowledge-enhanced model for decision-supporting agroforestry systems
    Cavaliere, Danilo
    Senatore, Sabrina
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [33] Hypergraph-enhanced multi-interest learning for multi-behavior sequential recommendation
    Li, Qingfeng
    Ma, Huifang
    Jin, Wangyu
    Ji, Yugang
    Li, Zhixin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [34] Disentangling User Cognitive Intent with Causal Reasoning for Knowledge-Enhanced Recommendation
    Xu, Hongcai
    Bao, Junpeng
    Lin, Qika
    Hou, Lifang
    Chen, Feng
    COGNITIVE COMPUTATION, 2024, 16 (06) : 3391 - 3404
  • [35] Multi-aspect Knowledge-enhanced Hypergraph Attention Network for Conversational Recommendation Systems
    Li, Xiaokang
    Zhang, Yihao
    Huang, Yonghao
    Li, Kaibei
    Zhang, Yunjia
    Wang, Xibin
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [36] A Survey on User Behavior Modeling in Recommender Systems
    He, Zhicheng
    Liu, Weiwen
    Guo, Wei
    Qin, Jiarui
    Zhang, Yingxue
    Hu, Yaochen
    Tang, Ruiming
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6656 - 6664
  • [37] Modularized user modeling in conversational recommender systems
    Wärnestål, P
    USER MODELING 2005, PROCEEDINGS, 2005, 3538 : 527 - 529
  • [38] Graph Convolution Network and User Interest Modeling for Enhanced Recommendation Systems
    Xu, Zihang
    Chu, Chiawei
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 332 - 339
  • [39] User Response Modeling in Recommender Systems: A Survey
    M. Shirokikh
    I. Shenbin
    A. Alekseev
    A. Volodkevich
    A. Vasilev
    S. Nikolenko
    Journal of Mathematical Sciences, 2024, 285 (2) : 255 - 293
  • [40] Contrastive multi-interest graph attention network for knowledge-aware recommendation
    Liu, Jianfang
    Wang, Wei
    Yi, Baolin
    Shen, Xiaoxuan
    Zhang, Huanyu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255