Explainable AI (XAI): Core Ideas, Techniques, and Solutions

被引:225
|
作者
Dwivedi, Rudresh [1 ]
Dave, Devam [2 ]
Naik, Het [2 ]
Singhal, Smiti [2 ]
Omer, Rana [3 ]
Patel, Pankesh [4 ]
Qian, Bin [5 ]
Wen, Zhenyu [5 ,6 ,7 ]
Shah, Tejal [5 ]
Morgan, Graham [5 ]
Ranjan, Rajiv [5 ]
机构
[1] Netaji Subhas Univ Technol, Delhi, India
[2] Pandit Deendayal Petr Univ, Gandhinagar, India
[3] Cardiff Univ, Sch Comp Sci & Informat, Cardiff, Wales
[4] Univ South Carolina, AI Inst, Columbia, SC 29208 USA
[5] Newcastle Univ, Sch Comp, Newcastle Upon Tyne, Tyne & Wear, England
[6] Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou 310023, Peoples R China
[7] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Peoples R China
关键词
Explainable artificial intelligence; interpretable AI; programming framework; software toolkits;
D O I
10.1145/3561048
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As our dependence on intelligent machines continues to grow, so does the demand for more transparent and interpretable models. In addition, the ability to explain the model generally is now the gold standard for building trust and deployment of artificial intelligence systems in critical domains. Explainable artificial intelligence (XAI) aims to provide a suite of machine learning techniques that enable human users to understand, appropriately trust, and produce more explainable models. Selecting an appropriate approach for building an XAI-enabled application requires a clear understanding of the core ideas within XAI and the associated programming frameworks. We survey state-of-the-art programming techniques for XAI and present the different phases of XAI in a typical machine learning development process. We classify the various XAI approaches and, using this taxonomy, discuss the key differences among the existing XAI techniques. Furthermore, concrete examples are used to describe these techniques that are mapped to programming frameworks and software toolkits. It is the intention that this survey will help stakeholders in selecting the appropriate approaches, programming frameworks, and software toolkits by comparing them through the lens of the presented taxonomy.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Fair and Explainable Automatic Recruitment
    Ortega, Alfonso
    Fierrez, Julian
    Morales, Aythami
    Wang, Zilong
    Ribeiro, Tony
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2021), 2021, : 78 - 87
  • [42] XAI-IoT: An Explainable AI Framework for Enhancing Anomaly Detection in IoT Systems
    Namrita Gummadi, Anna
    Napier, Jerry C.
    Abdallah, Mustafa
    IEEE ACCESS, 2024, 12 : 71024 - 71054
  • [43] Constrained Interval Type-2 Fuzzy Classification Systems for Explainable AI (XAI)
    D'Alterio, Pasquale
    Garibaldi, Jonathan M.
    John, Robert, I
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [44] Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities
    Saeed, Waddah
    Omlin, Christian
    KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [45] Earthquake-Induced Building-Damage Mapping Using Explainable AI (XAI)
    Matin, Sahar S.
    Pradhan, Biswajeet
    SENSORS, 2021, 21 (13)
  • [46] Critical Thinking About Explainable AI (XAI) for Rule-Based Fuzzy Systems
    Mendel, Jerry M.
    Bonissone, Piero P.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (12) : 3579 - 3593
  • [47] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Barredo Arrieta, Alejandro
    Diaz-Rodriguez, Natalia
    Del Ser, Javier
    Bennetot, Adrien
    Tabik, Siham
    Barbado, Alberto
    Garcia, Salvador
    Gil-Lopez, Sergio
    Molina, Daniel
    Benjamins, Richard
    Chatila, Raja
    Herrera, Francisco
    INFORMATION FUSION, 2020, 58 : 82 - 115
  • [48] Verbinden von Natürlicher und Künstlicher Intelligenz: eine experimentelle Testumgebung für Explainable AI (xAI)Combining Natural and Artificial Intelligence: An Experimental Test Environment for Explainable AI (xAI)
    Andreas Holzinger
    Heimo Müller
    HMD Praxis der Wirtschaftsinformatik, 2020, 57 (1) : 33 - 45
  • [49] Explainable AI (XAI) Models Applied to the Multi-agent Environment of Financial Markets
    Ohana, Jean Jacques
    Ohana, Steve
    Benhamou, Eric
    Saltiel, David
    Guez, Beatrice
    EXPLAINABLE AND TRANSPARENT AI AND MULTI-AGENT SYSTEMS, EXTRAAMAS 2021, 2021, 12688 : 189 - 207
  • [50] RB-XAI: Relevance -Based Explainable AI for Traffic Detection in Autonomous Systems
    Adom, Isaac
    Mahmoud, Nabil Mahmoud
    SOUTHEASTCON 2024, 2024, : 1358 - 1367