On the space of compact diamonds of Lorentzian length spaces

被引:0
|
作者
Barrera, Waldemar [1 ]
de Oca, Luis Montes [1 ]
Solis, Didier A. [1 ]
机构
[1] Univ Autonoma Yucatan, Fac Matemat, Merida, Mexico
关键词
Lorentzian length spaces; causality; hyperspaces;
D O I
10.1088/1361-6382/ad2289
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work we introduce the taxicab and uniform products for Lorentzian pre-length spaces. We further use these concepts to endow the space D(RxTX) of causal diamonds with a Lorentzian length space structure, closely relating its causal properties with its geometry as a metric space furnished with its associated Hausdorff distance. Among the general results, we show that this space is geodesic and globally hyperbolic for a complete length space (X, d).
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Curves in Lorentzian spaces.
    Nesovic, E
    Petrovic-Torgasev, M
    Verstraelen, L
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2005, 8B (03): : 685 - 696
  • [42] Recurrent Lorentzian Weyl Spaces
    Dikarev, Andrei
    Galaev, Anton S.
    Schneider, Eivind
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)
  • [43] SYMMETRICAL FRAMES ON LORENTZIAN SPACES
    COLL, B
    MORALES, JA
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (09) : 2450 - 2455
  • [44] NEW EXAMPLES OF COMPACT MINITWISTOR SPACES AND THEIR MODULI SPACE
    Honda, Nobuhiro
    OSAKA JOURNAL OF MATHEMATICS, 2010, 47 (03) : 717 - 730
  • [45] UNIONS AND INTERSECTIONS OF LP SPACES ON A LOCALLY COMPACT SPACE
    BERTRANDIAS, JP
    BULLETIN DES SCIENCES MATHEMATIQUES, 1977, 101 (03): : 209 - 247
  • [46] DEFORMATION OF VECTORIAL SPACE BUNDLES IN COMPACT COMPLEX SPACES
    FORSTER, O
    KNORR, K
    MATHEMATISCHE ANNALEN, 1974, 209 (04) : 291 - 346
  • [47] The splitting theorem for globally hyperbolic Lorentzian length spaces with non-negative timelike curvature
    Tobias Beran
    Argam Ohanyan
    Felix Rott
    Didier A. Solis
    Letters in Mathematical Physics, 113
  • [48] The splitting theorem for globally hyperbolic Lorentzian length spaces with non-negative timelike curvature
    Beran, Tobias
    Ohanyan, Argam
    Rott, Felix
    Solis, Didier A.
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (02)
  • [49] Compact null hypersurfaces in Lorentzian manifolds
    Atindogbe, C.
    Gutierrez, M.
    Hounnonkpe, R.
    ADVANCES IN GEOMETRY, 2021, 21 (02) : 251 - 263
  • [50] Lorentzian compact manifolds: Isometries and geodesics
    del Barco, Viviana
    Ovando, Gabriela P.
    Vittone, Francisco
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 78 : 48 - 58