Explorations of the holonomy of a rolling sphere

被引:1
|
作者
Honein, Theresa E. [1 ]
O'Reilly, Oliver M. [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
holonomy; non-holonomic constraints; rolling sphere; motion planning; rotations; spherical robots; GEOMETRY;
D O I
10.1098/rspa.2023.0684
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Consider a rigid body rolling with one point in contact with a fixed surface. Now suppose that the instantaneous point of contact traces out a closed path. As a demonstration of a phenomenon known as holonomy, the body will typically not return to its original orientation. The simplest demonstration of this phenomenon in rigid body dynamics occurs in the motion of a rolling sphere and finds application to path planning and reorientation of spherical robots. Motivated by earlier works of Bryant and Johnson, we establish expressions for the change in orientation of a rolling sphere after completing a rectangular path. We use numerical methods to show that all possible changes in orientation are possible using a single rectangular path. Based on the Euler angle parameterization of a rotation, we develop a more intuitive method to achieve a desired orientation using three rectangular paths. With regards to applications, the paths we discuss can be employed to achieve any desired reorientation of a spherical robot.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A SPHERE ROLLING ON A HORIZONTAL ROTATING PLANE
    FUFAEV, NA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1983, 47 (01): : 27 - 29
  • [22] FLUID DRAG ON A SPHERE ROLLING IN A TUBE
    BAUER, AB
    DUPUIS, RA
    JOURNAL OF APPLIED MECHANICS, 1967, 34 (03): : 538 - &
  • [23] The Electrogeometrical Model of the Rolling Sphere Method
    Brusso, Barry
    IEEE INDUSTRY APPLICATIONS MAGAZINE, 2016, 22 (02) : 6 - 9
  • [24] FLUID DRAG ON A SPHERE ROLLING IN A TUBE
    BAUER, AB
    DUPUIS, RA
    MECHANICAL ENGINEERING, 1967, 89 (08) : 58 - &
  • [25] SPHERE ROLLING DOWN A GROOVED TRACK
    BACHMAN, RA
    AMERICAN JOURNAL OF PHYSICS, 1985, 53 (08) : 765 - 767
  • [26] Transition to chaos in the wake of a rolling sphere
    Rao, A.
    Passaggia, P. -Y.
    Bolnot, H.
    Thompson, M. C.
    Leweke, T.
    Hourigan, K.
    JOURNAL OF FLUID MECHANICS, 2012, 695 : 135 - 148
  • [27] KINEMATICS OF THE ROLLING SPHERE AND QUANTUM SPIN
    Bloch, Anthony M.
    Rojo, Alberto G.
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2010, 10 (04) : 221 - 238
  • [28] ON HAMMERSLEY MINIMUM PROBLEM FOR A ROLLING SPHERE
    ARTHURS, AM
    WALSH, GR
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1986, 99 : 529 - 534
  • [29] A sphere rolling on the inside surface of a cone
    Campos, I.
    Fernandez-Chapou, J. L.
    Salas-Brito, A. L.
    Vargas, C. A.
    EUROPEAN JOURNAL OF PHYSICS, 2006, 27 (03) : 567 - 576
  • [30] Mechanics of rolling of nanoribbon on tube and sphere
    Yin, Qifang
    Shi, Xinghua
    NANOSCALE, 2013, 5 (12) : 5450 - 5455