Remote Sensing Image Road Segmentation Method Integrating CNN-Transformer and UNet

被引:1
|
作者
Wang, Rui [1 ]
Cai, Mingxiang [1 ]
Xia, Zixuan [2 ]
Zhou, Zhicui [3 ]
机构
[1] China Transport Telecommun & Informat Ctr, Beijing 100011, Peoples R China
[2] Heilongjiang Univ Technol, Harbin 150022, Heilongjiang, Peoples R China
[3] No 1 Middle Sch Weifang, Jixi 150022, Heilongjiang, Peoples R China
关键词
Road segmentation; deep learning; CNN-transformer; attention; UNet; EXTRACTION;
D O I
10.1109/ACCESS.2023.3344797
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Real-time and accurate road information is crucial for updating electronic navigation maps. To address the problem of low precision and poor robustness in current semantic segmentation methods for road extraction from remote sensing imagery, we proposed a UNet road semantic segmentation model based on attention mechanism improvement. First, we introduce a CNN-Transformer hybrid structure to the encoder to enhance the feature extraction capabilities of global and local details. Second, the traditional upsampling module in the decoder is replaced with a dual upsampling module to improve feature extraction capabilities and segmentation accuracy. Furthermore, the hard-swish activation function is used instead of ReLU activation function to smooth the curve, which helps to improve the generalization and non-linear feature extraction abilities and avoid gradient vanishing. Finally, a comprehensive loss function combining cross entropy and dice is used to strengthen the segmentation result constraints and further improve segmentation accuracy. Experimental validation is performed on the Ottawa Road Dataset and the Massachusetts Road Dataset. Experimental results show that compared with U-Net, PSPNet, DeepLab V3 and TransUNet networks, this algorithm is the best in terms of MIoU, MPA and F1 score. Among them, on the Ottawa road data set, the MPA of this algorithm reached 95.48%. On the Massachusetts road data set, MPA is 92.56%. This method shows good performance in road extraction.
引用
收藏
页码:144446 / 144455
页数:10
相关论文
共 50 条
  • [31] Multi-Scale Orthogonal Model CNN-Transformer for Medical Image Segmentation
    Zhou, Wuyi
    Zeng, Xianhua
    Zhou, Mingkun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (10)
  • [32] Efficient Transformer for Remote Sensing Image Segmentation
    Xu, Zhiyong
    Zhang, Weicun
    Zhang, Tianxiang
    Yang, Zhifang
    Li, Jiangyun
    REMOTE SENSING, 2021, 13 (18)
  • [33] HAU-Net: Hybrid CNN-transformer for breast ultrasound image segmentation
    Zhang, Huaikun
    Lian, Jing
    Yi, Zetong
    Wu, Ruichao
    Lu, Xiangyu
    Ma, Pei
    Ma, Yide
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
  • [34] Remote sensing image semantic segmentation combining UNET and FPN
    Wang Xi
    Yu Ming
    Ren Hong-e
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (03) : 475 - 483
  • [35] CFM-UNet:A Joint CNN and Transformer Network via Cross Feature Modulation for Remote Sensing Images Segmentation
    Min WANG
    Peidong WANG
    Journal of Geodesy and Geoinformation Science, 2023, 6 (04) : 40 - 47
  • [36] Multi-Resolution Transformer Network for Building and Road Segmentation of Remote Sensing Image
    Sun, Zhongyu
    Zhou, Wangping
    Ding, Chen
    Xia, Min
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (03)
  • [37] CMTFNet: CNN and Multiscale Transformer Fusion Network for Remote-Sensing Image Semantic Segmentation
    Wu, Honglin
    Huang, Peng
    Zhang, Min
    Tang, Wenlong
    Yu, Xinyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [38] Semhybridnet: a semantically enhanced hybrid CNN-transformer network for radar pulse image segmentation
    Liu, Hongjia
    Xiao, Yubin
    Wu, Xuan
    Li, Yuanshu
    Zhao, Peng
    Liang, Yanchun
    Wang, Liupu
    Zhou, You
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 2851 - 2868
  • [39] UCTNet: Uncertainty-guided CNN-Transformer hybrid networks for medical image segmentation
    Guo, Xiayu
    Lin, Xian
    Yang, Xin
    Yu, Li
    Cheng, Kwang-Ting
    Yan, Zengqiang
    PATTERN RECOGNITION, 2024, 152
  • [40] DECT: Diffusion-Enhanced CNN-Transformer for Multisource Remote Sensing Data Classification
    Zhang, Guanglian
    Zhang, Lan
    Zhang, Zhanxu
    Deng, Jiangwei
    Bian, Lifeng
    Yang, Chen
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17 : 19288 - 19301