Remote Sensing Image Road Segmentation Method Integrating CNN-Transformer and UNet

被引:1
|
作者
Wang, Rui [1 ]
Cai, Mingxiang [1 ]
Xia, Zixuan [2 ]
Zhou, Zhicui [3 ]
机构
[1] China Transport Telecommun & Informat Ctr, Beijing 100011, Peoples R China
[2] Heilongjiang Univ Technol, Harbin 150022, Heilongjiang, Peoples R China
[3] No 1 Middle Sch Weifang, Jixi 150022, Heilongjiang, Peoples R China
关键词
Road segmentation; deep learning; CNN-transformer; attention; UNet; EXTRACTION;
D O I
10.1109/ACCESS.2023.3344797
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Real-time and accurate road information is crucial for updating electronic navigation maps. To address the problem of low precision and poor robustness in current semantic segmentation methods for road extraction from remote sensing imagery, we proposed a UNet road semantic segmentation model based on attention mechanism improvement. First, we introduce a CNN-Transformer hybrid structure to the encoder to enhance the feature extraction capabilities of global and local details. Second, the traditional upsampling module in the decoder is replaced with a dual upsampling module to improve feature extraction capabilities and segmentation accuracy. Furthermore, the hard-swish activation function is used instead of ReLU activation function to smooth the curve, which helps to improve the generalization and non-linear feature extraction abilities and avoid gradient vanishing. Finally, a comprehensive loss function combining cross entropy and dice is used to strengthen the segmentation result constraints and further improve segmentation accuracy. Experimental validation is performed on the Ottawa Road Dataset and the Massachusetts Road Dataset. Experimental results show that compared with U-Net, PSPNet, DeepLab V3 and TransUNet networks, this algorithm is the best in terms of MIoU, MPA and F1 score. Among them, on the Ottawa road data set, the MPA of this algorithm reached 95.48%. On the Massachusetts road data set, MPA is 92.56%. This method shows good performance in road extraction.
引用
收藏
页码:144446 / 144455
页数:10
相关论文
共 50 条
  • [1] CTFNet: CNN-Transformer Fusion Network for Remote-Sensing Image Semantic Segmentation
    Wu H.
    Huang P.
    Zhang M.
    Tang W.
    IEEE Geoscience and Remote Sensing Letters, 2024, 21 : 1 - 5
  • [2] LATrans-Unet: Improving CNN-Transformer with Location Adaptive for Medical Image Segmentation
    Lin, Qiqin
    Yao, Junfeng
    Hong, Qingqi
    Cao, Xianpeng
    Zhou, Rongzhou
    Xie, Weixing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XIII, 2024, 14437 : 223 - 234
  • [3] CTA-UNet: CNN-transformer architecture UNet for dental CBCT images segmentation
    Chen, Zeyu
    Chen, Senyang
    Hu, Fengjun
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (17):
  • [4] Combining Swin Transformer With UNet for Remote Sensing Image Semantic Segmentation
    Fan, Lili
    Zhou, Yu
    Liu, Hongmei
    Li, Yunjie
    Cao, Dongpu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 11
  • [5] Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation
    He, Xin
    Zhou, Yong
    Zhao, Jiaqi
    Zhang, Di
    Yao, Rui
    Xue, Yong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] AFC-Unet: Attention-fused full-scale CNN-transformer unet for medical image segmentation
    Meng, Wenjie
    Liu, Shujun
    Wang, Huajun
    Biomedical Signal Processing and Control, 2025, 99
  • [7] CvT-UNet: A weld pool segmentation method integrating a CNN and a transformer
    Yang, Longcheng
    Wang, Huajun
    Meng, Wenjie
    Pan, Hongyu
    HELIYON, 2024, 10 (15)
  • [8] CTCFNet: CNN-Transformer Complementary and Fusion Network for High-Resolution Remote Sensing Image Semantic Segmentation
    Lu, Chen
    Zhang, Xian
    Du, Kaile
    Xu, Han
    Liu, Guangcan
    IEEE Transactions on Geoscience and Remote Sensing, 2024, 62
  • [9] CNN and Transformer Fusion for Remote Sensing Image Semantic Segmentation
    Chen, Xin
    Li, Dongfen
    Liu, Mingzhe
    Jia, Jiaru
    REMOTE SENSING, 2023, 15 (18)
  • [10] Hybrid Shunted Transformer embedding UNet for remote sensing image semantic segmentation
    Zhou H.
    Xiao X.
    Li H.
    Liu X.
    Liang P.
    Neural Computing and Applications, 2024, 36 (25) : 15705 - 15720