MCWESRGAN: Improving Enhanced Super-Resolution Generative Adversarial Network for Satellite Images

被引:2
|
作者
Karwowska, Kinga [1 ]
Wierzbicki, Damian [1 ]
机构
[1] Mil Univ Technol, Fac Civil Engn & Geodesy, Dept Imagery Intelligence, PL-00908 Warsaw, Poland
关键词
Spatial resolution; Training; Generators; Superresolution; Generative adversarial networks; Satellite images; Computational modeling; Convolutional neural networks; deep learning; enhanced super-resolution generative adversarial network (ESRGAN); neural networks; power spectral density (PSD); single-image super-resolution (SISR); super resolution (SR); RESOLUTION;
D O I
10.1109/JSTARS.2023.3322642
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the dynamic technological development, we are witnessing a major progress in solutions that allow for the observation of Earth's surface. Small satellites have a significant drawback. Due to their limitations, the installed optic systems are not perfect. As a result, the quality of the obtained images is lower, including lower resolution, although the satellites move on the Low Earth Orbit. In the case of images lacking a high-resolution counterpart, the spatial resolution of the imagery can be improved using single-image super-resolution algorithms. In this article, we present an SISR solution based on a new network called MCWESRGAN, which is a modification of the popular ESRGAN network. We propose a novel strategy that introduces a multi-column discriminator model. The generator model is trained using Wasserstein loss. The introduced modifications enable a tenfold reduction in the training time of the network. The proposed algorithm is verified using images obtained from space, aerial imagery, and the Dataset for Object deTection in Aerial Images (DOTA) database. A set of evaluation methods for super-resolution (SR) images is proposed to verify the results. These evaluation methods indicate areas that are poorly estimated by the algorithm. Furthermore, as part of the conducted experiments, an absolute assessment method for interpretational potential based on the power spectral density of the image (PSD) is proposed, allowing for determining the magnitude of interpretational improvement after applying resolution enhancement algorithms. The conducted research demonstrates that we achieve better qualitative and quantitative results than classical ESRGAN methods and other state-of-the-art (SOTA) approaches.
引用
收藏
页码:9886 / 9906
页数:21
相关论文
共 50 条
  • [21] Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network
    Jiang, Zetao
    Huang, Yongsong
    Hu, Lirui
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [22] Enhanced generative adversarial network for 3D brain MRI super-resolution
    Wang, Jiancong
    Chen, Yuhua
    Wu, Yifan
    Shi, Jianbo
    Gee, James
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 3616 - 3625
  • [23] Image Super-Resolution Reconstruction Algorithm Based on Improved Enhanced Generative Adversarial Network
    She, Xiangyang
    Yang, Qinghao
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 644 - 651
  • [24] Number plate recognition from enhanced super-resolution using generative adversarial network
    Kabiraj, Anwesh
    Pal, Debojyoti
    Ganguly, Debayan
    Chatterjee, Kingshuk
    Roy, Sudipta
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (09) : 13837 - 13853
  • [25] Number plate recognition from enhanced super-resolution using generative adversarial network
    Anwesh Kabiraj
    Debojyoti Pal
    Debayan Ganguly
    Kingshuk Chatterjee
    Sudipta Roy
    Multimedia Tools and Applications, 2023, 82 : 13837 - 13853
  • [26] Attention-Enhanced Generative Adversarial Network for Hyperspectral Imagery Spatial Super-Resolution
    Wang, Baorui
    Zhang, Yifan
    Feng, Yan
    Xie, Bobo
    Mei, Shaohui
    REMOTE SENSING, 2023, 15 (14)
  • [27] A multiresolution mixture generative adversarial network for video super-resolution
    Tian, Zhiqiang
    Wang, Yudiao
    Du, Shaoyi
    Lan, Xuguang
    PLOS ONE, 2020, 15 (07):
  • [28] Image super-resolution based on conditional generative adversarial network
    Gao, Hongxia
    Chen, Zhanhong
    Huang, Binyang
    Chen, Jiahe
    Li, Zhifu
    IET IMAGE PROCESSING, 2020, 14 (13) : 3006 - 3013
  • [29] Mars image super-resolution based on generative adversarial network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    Zhang, Yongqiang (yongqiang.zhang.hit@gmail.com); Ding, Mingli (mingli.ding.hit@gmail.com), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 108889 - 108898
  • [30] Image Super-Resolution Reconstruction Based on a Generative Adversarial Network
    Wu, Yun
    Lan, Lin
    Long, Huiyun
    Kong, Guangqian
    Duan, Xun
    Xu, Changzhuan
    IEEE ACCESS, 2020, 8 : 215133 - 215144