MCWESRGAN: Improving Enhanced Super-Resolution Generative Adversarial Network for Satellite Images

被引:2
|
作者
Karwowska, Kinga [1 ]
Wierzbicki, Damian [1 ]
机构
[1] Mil Univ Technol, Fac Civil Engn & Geodesy, Dept Imagery Intelligence, PL-00908 Warsaw, Poland
关键词
Spatial resolution; Training; Generators; Superresolution; Generative adversarial networks; Satellite images; Computational modeling; Convolutional neural networks; deep learning; enhanced super-resolution generative adversarial network (ESRGAN); neural networks; power spectral density (PSD); single-image super-resolution (SISR); super resolution (SR); RESOLUTION;
D O I
10.1109/JSTARS.2023.3322642
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the dynamic technological development, we are witnessing a major progress in solutions that allow for the observation of Earth's surface. Small satellites have a significant drawback. Due to their limitations, the installed optic systems are not perfect. As a result, the quality of the obtained images is lower, including lower resolution, although the satellites move on the Low Earth Orbit. In the case of images lacking a high-resolution counterpart, the spatial resolution of the imagery can be improved using single-image super-resolution algorithms. In this article, we present an SISR solution based on a new network called MCWESRGAN, which is a modification of the popular ESRGAN network. We propose a novel strategy that introduces a multi-column discriminator model. The generator model is trained using Wasserstein loss. The introduced modifications enable a tenfold reduction in the training time of the network. The proposed algorithm is verified using images obtained from space, aerial imagery, and the Dataset for Object deTection in Aerial Images (DOTA) database. A set of evaluation methods for super-resolution (SR) images is proposed to verify the results. These evaluation methods indicate areas that are poorly estimated by the algorithm. Furthermore, as part of the conducted experiments, an absolute assessment method for interpretational potential based on the power spectral density of the image (PSD) is proposed, allowing for determining the magnitude of interpretational improvement after applying resolution enhancement algorithms. The conducted research demonstrates that we achieve better qualitative and quantitative results than classical ESRGAN methods and other state-of-the-art (SOTA) approaches.
引用
收藏
页码:9886 / 9906
页数:21
相关论文
共 50 条
  • [1] Super-Resolution Reconstruction Algorithm of Images Based on Improved Enhanced Super-Resolution Generative Adversarial Network
    Xin Yuanxue
    Zhu Fengting
    Shi Pengfei
    Yang Xin
    Zhou Runkang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (04)
  • [2] ESRGAN plus : FURTHER IMPROVING ENHANCED SUPER-RESOLUTION GENERATIVE ADVERSARIAL NETWORK
    Rakotonirina, Nathanael Carraz
    Rasoanaivo, Andry
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3637 - 3641
  • [3] Super-Resolution Based on Generative Adversarial Network for HRTEM Images
    Mao, Fuqi
    Guan, Xiaohan
    Wang, Ruoyu
    Yue, Wen
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (10)
  • [4] Recovering Super-Resolution Generative Adversarial Network for Underwater Images
    Chen, Yang
    Sun, Jinxuan
    Jiao, Wencong
    Zhong, Guoqiang
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV, 2019, 1142 : 75 - 83
  • [5] Lightweight Super-Resolution Generative Adversarial Network for SAR Images
    Jiang, Nana
    Zhao, Wenbo
    Wang, Hui
    Luo, Huiqi
    Chen, Zezhou
    Zhu, Jubo
    REMOTE SENSING, 2024, 16 (10)
  • [6] Enhanced Discriminative Generative Adversarial Network for Face Super-Resolution
    Yang, Xi
    Lu, Tao
    Wang, Jiaming
    Zhang, Yanduo
    Wu, Yuntao
    Wang, Zhongyuan
    Xiong, Zixiang
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2018, PT II, 2018, 11165 : 441 - 452
  • [7] Super-Resolution Reconstruction of Densely Connected Generative Adversarial Network Images
    Li Bin
    Ma Lu
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (22)
  • [8] Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention
    Hou, Zhongwei
    Cha, Xingzeng
    An, Hongyu
    Zhang, Aiyang
    Lai, Dakun
    ENTROPY, 2023, 25 (03)
  • [9] Enhanced image super-resolution using hierarchical generative adversarial network
    Zhao, Jianwei
    Fang, Chenyun
    Zhou, Zhenghua
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2022, 15 (03) : 243 - 257
  • [10] SUPER-RESOLUTION OF REMOTE SENSING IMAGES BASED ON TRANSFERRED GENERATIVE ADVERSARIAL NETWORK
    Ma, Wen
    Pan, Zongxu
    Guo, Jiayi
    Lei, Bin
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1148 - 1151