Effect of the Ni-to-CaO Ratio on Integrated CO2 Capture and Direct Methanation

被引:9
|
作者
Woo, Jin-Hyeok [1 ]
Jo, Seongbin [2 ]
Kim, Ju-Eon [1 ]
Kim, Tae-Young [3 ]
Son, Han-Dong [1 ]
Ryu, Ho-Jung [4 ]
Hwang, Byungwook [4 ]
Kim, Jae-Chang [1 ]
Lee, Soo-Chool [3 ]
Gilliard-AbdulAziz, Kandis Leslie [2 ,5 ]
机构
[1] Kyungpook Natl Univ, Dept Chem Engn, Daegu 41566, South Korea
[2] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA
[3] Kyungpook Natl Univ, Res Inst Adv Energy Technol, Daegu 41566, South Korea
[4] Korea Inst Energy Res, Photovolta Lab, Daejeon 34129, South Korea
[5] Univ Calif Riverside, Dept Mat Sci & Engn, Riverside, CA 92521 USA
基金
新加坡国家研究基金会;
关键词
ICCU; direct methanation; Ni/CaO ratio; macroporous structure; Ni dispersion; CONVERSION; SORBENTS; SYSTEM; GAS;
D O I
10.3390/catal13081174
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct methanation in an integrated CO2 capture and utilization system has recently gained considerable attention as a promising approach owing to its simplified process and lower requirement of total thermal energy as compared to conventional CO2 capture and utilization techniques. This study formulated macroporous structured Ni/CaO catal-sorbents by controlling the Ni-to-CaO ratio. The influence of this ratio on the CO2 capture (capacity and kinetics) and direct methanation performances (productivity and kinetics) was evaluated at 500 C-?. CO2 capture combined with direct methanation experiments revealed that 10Ni/CaO exhibited the best CO2 capture capacity, kinetics, and CH4 productivity with the thermal stability of Ni and CaO species.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Ni-CaO dual function materials prepared by different synthetic modes for integrated CO2 capture and conversion
    Wang, Guodong
    Guo, Yafei
    Yu, Jun
    Liu, Fanghua
    Sun, Jian
    Wang, Xinru
    Wang, Tao
    Zhao, Chuanwen
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [22] Capture of CO2 by vermiculite impregnated with CaO
    Simplicio Pereira, Matheus Henrique
    dos Santos, Claudio Gouvea
    de Lima, Geraldo Magela
    Oliveira Bruziquesi, Carlos Giovani
    Oliveira, Victor de Alvarenga
    CARBON MANAGEMENT, 2022, 13 (01) : 117 - 126
  • [23] The effect of CaO sintering on cyclic CO2 capture in energy systems
    Sun, P.
    Grace, J. R.
    Lim, C. J.
    Anthony, E. J.
    AICHE JOURNAL, 2007, 53 (09) : 2432 - 2442
  • [24] Continuous CO2 capture and reduction in one process: CO2 methanation over unpromoted and promoted Ni/ZrO2
    Hu, Lingjun
    Urakawa, Atsushi
    JOURNAL OF CO2 UTILIZATION, 2018, 25 : 323 - 329
  • [25] CO and CO2 methanation over supported Ni catalysts
    Le, Thien An
    Kim, Min Sik
    Lee, Sae Ha
    Kim, Tae Wook
    Park, Eun Duck
    CATALYSIS TODAY, 2017, 293 : 89 - 96
  • [26] Mn-enhanced performance of the Ni-CaO/γ-Al2O3 dual function material for CO2 capture and in situ methanation
    Xiang, Shu-Xiang
    Wang, Jin-Peng
    Gao, Su
    Guo, Zhan-Kuo
    Jiang, Hui-Lin
    Dong, Bao-Xia
    Teng, Yun-Lei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 357
  • [27] Tandem distributing Ni into CaO framework for isothermal integration of CO2 capture and conversion
    Hu, Jiawei
    Hongmanorom, Plaifa
    Chen, Junmei
    Wei, Wei
    Chirawatkul, Prae
    Galvita, Vladimir V.
    Kawi, Sibudjing
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [28] Tandem distributing Ni into CaO framework for isothermal integration of CO2 capture and conversion
    Hu, Jiawei
    Hongmanorom, Plaifa
    Chen, Junmei
    Wei, Wei
    Chirawatkul, Prae
    Galvita, Vladimir V.
    Kawi, Sibudjing
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [29] CO2 capture and dissociation on novel Ni/CaO bifunctional materials: A theoretical study
    Wang, Hao
    Li, Rongrong
    Wang, Enna
    Zhu, Zhengtong
    Zhang, Jianbin
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2024, 14 (03): : 411 - 426
  • [30] The Ni/ZrO2 catalyst and the methanation of CO and CO2
    da Silva, Daniela C. D.
    Letichevsky, Sonia
    Borges, Luiz E. P.
    Appel, Lucia G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (11) : 8923 - 8928