APPROXIMATION OF THE ELASTIC DIRICHLET-TO-NEUMANN MAP

被引:1
|
作者
Vodev, Georgi [1 ]
机构
[1] Univ Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 03, France
关键词
Linear equation of elasticity; Dirichlet-to-Neumann map; LINEAR ELASTICITY; RESONANCES;
D O I
10.3934/ipi.2022042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Dirichlet-to-Neumann map for the stationary linear equation of elasticity in a bounded domain in R-d, d >= 2, with smooth boundary. We show that it can be approximated by a pseudodifferential operator on the boundary with a matrix-valued symbol and we compute the principal symbol modulo conjugation by unitary matrices.
引用
收藏
页码:297 / 318
页数:22
相关论文
共 50 条
  • [41] Dirichlet-to-Neumann map for Poincaré–Einstein metrics in even dimensions
    Fang Wang
    [J]. Calculus of Variations and Partial Differential Equations, 2019, 58
  • [42] Approximate local Dirichlet-to-Neumann map for three-dimensional time-harmonic elastic waves
    Chaillat, Stephanie
    Darbas, Marion
    Le Louer, Frederique
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 297 : 62 - 83
  • [43] The Stokes Dirichlet-to-Neumann operator
    Denis, C.
    ter Elst, A. F. M.
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (02)
  • [44] Dirichlet-to-Neumann Maps on Trees
    Del Pezzo, Leandro M.
    Frevenza, Nicolas
    Rossi, Julio D.
    [J]. POTENTIAL ANALYSIS, 2020, 53 (04) : 1423 - 1447
  • [45] Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map
    Francini, E
    [J]. INVERSE PROBLEMS, 2000, 16 (01) : 107 - 119
  • [46] Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data
    Klibanov, Michael, V
    Li, Jingzhi
    Zhang, Wenlong
    [J]. INVERSE PROBLEMS, 2019, 35 (03)
  • [47] Semiconductors and Dirichlet-to-Neumann maps
    Leitao, Antonio
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2006, 25 (2-3): : 187 - 203
  • [48] Dirichlet-to-Neumann Maps on Trees
    Leandro M. Del Pezzo
    Nicolás Frevenza
    Julio D. Rossi
    [J]. Potential Analysis, 2020, 53 : 1423 - 1447
  • [49] A dirichlet-to-Neumann map approach to resonance gaps and bands of periodic networks
    Fox, Colin
    Oleinik, Vladimir
    Pavlov, Boris
    [J]. RECENT ADVANCES IN DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2006, 412 : 151 - +
  • [50] Dirichlet-to-Neumann map method for analyzing crossed arrays of circular cylinders
    Wu, Yumao
    Lu, Ya Yan
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2009, 26 (11) : 1984 - 1993