An overview of ultrasound-derived radiomics and deep learning in liver

被引:3
|
作者
Zhang, Di [1 ]
Zhang, Xian-Ya [2 ]
Duan, Ya-Yang [1 ]
Dietrich, Christoph F. [3 ]
Cui, Xin-Wu [2 ]
Zhang, Chao-Xue [1 ,4 ]
机构
[1] Anhui Med Univ, Dept Ultrasound, Affiliated Hosp 1, Hefei, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Med Ultrasound, Wuhan, Hubei, Peoples R China
[3] Hirslanden Clin, Dept Internal Med, Bern, Switzerland
[4] Anhui Med Univ, Dept Ultrasound, Affiliated Hosp 1, Hefei 230022, Anhui, Peoples R China
关键词
artificial intelligence; ultrasound; focal liver lesions; radiomics; deep learning; FATTY LIVER; HEPATOCELLULAR-CARCINOMA; NEURAL-NETWORKS; DIAGNOSIS; ULTRASONOGRAPHY; QUANTIFICATION; STEATOSIS; OUTCOMES; DISEASE; LESIONS;
D O I
10.11152/mu-4080
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Over the past few years, developments in artificial intelligence (AI), especially in radiomics and deep learning, have enabled the extraction of pathophysiology-related information from varied medical imaging and are progressively transforming medical practice. AI applications are extending into domains previously thought to be accessible only to human experts. Recent research has demonstrated that ultrasound -derived radiomics and deep learning represent an enticing opportunity to benefit preoperative evaluation and prognostic monitoring of diffuse and focal liver disease. This review summarizes the application of radiomics and deep learning in ultrasound liver imaging, including identifying focal liver lesions and staging of liver fibrosis, as well as the evaluation of pathobiological properties of malignant tumors and the assessment of recurrence and prognosis. Besides, we identify important hurdles that must be overcome while also discussing the challenges and opportunities of radiomics and deep learning in clinical applications.
引用
收藏
页码:445 / 452
页数:8
相关论文
共 50 条
  • [21] Ultrasound-derived three-dimensional print models made ultrasimply
    Mauermann, William J.
    Matsumoto, Jane M.
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2018, 155 (01): : 146 - 146
  • [22] Ultrasound-derived fat fraction is not yet ready for widespread clinical use
    Low, Gavin
    Wilson, Mitchell P.
    RADIOLOGIA MEDICA, 2024, 129 (02): : 346 - 347
  • [23] The Prognostic Value of a Validated and Automated Intravascular Ultrasound-Derived Calcium Score
    Tara Neleman
    Shengnan Liu
    Maria N. Tovar Forero
    Eline M. J. Hartman
    Jurgen M. R. Ligthart
    Karen T. Witberg
    Paul Cummins
    Felix Zijlstra
    Nicolas M. Van Mieghem
    Eric Boersma
    Gijs van Soest
    Joost Daemen
    Journal of Cardiovascular Translational Research, 2021, 14 : 992 - 1000
  • [24] The Prognostic Value of a Validated and Automated Intravascular Ultrasound-Derived Calcium Score
    Neleman, Tara
    Liu, Shengnan
    Tovar Forero, Maria N.
    Hartman, Eline M. J.
    Ligthart, Jurgen M. R.
    Witberg, Karen T.
    Cummins, Paul
    Zijlstra, Felix
    Van Mieghem, Nicolas M.
    Boersma, Eric
    van Soest, Gijs
    Daemen, Joost
    JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2021, 14 (05) : 992 - 1000
  • [25] Ultrasound-Derived Three-Dimensional Printing in Congenital Heart Disease
    Samuel, Bennett P.
    Pinto, Candida
    Pietila, Todd
    Vettukattil, Joseph J.
    JOURNAL OF DIGITAL IMAGING, 2015, 28 (04) : 459 - 461
  • [26] Artificial intelligence-based, semi-automated segmentation for the extraction of ultrasound-derived radiomics features in breast cancer: a prospective multicenter study
    Bartolotta, Tommaso Vincenzo
    Militello, Carmelo
    Prinzi, Francesco
    Ferraro, Fabiola
    Rundo, Leonardo
    Zarcaro, Calogero
    Dimarco, Mariangela
    Orlando, Alessia Angela Maria
    Matranga, Domenica
    Vitabile, Salvatore
    RADIOLOGIA MEDICA, 2024, 129 (07): : 977 - 988
  • [27] Scanning plane comparison of ultrasound-derived morphological characteristics of the vastus lateralis
    Varanoske, Alyssa N.
    Fukuda, David H.
    Boone, Carleigh H.
    Beyer, Kyle S.
    Stout, Jeffrey R.
    Hoffman, Jay R.
    CLINICAL ANATOMY, 2017, 30 (04) : 533 - 542
  • [28] The immediate effect of physical activity on ultrasound-derived venous reflux parameters
    Tauraginskii, Roman A.
    Simakov, Sergei
    Borsuk, Denis
    Mazayshvili, Konstantin
    Lurie, Fedor
    JOURNAL OF VASCULAR SURGERY-VENOUS AND LYMPHATIC DISORDERS, 2020, 8 (04) : 640 - 645
  • [29] Three-Dimensional Ultrasound-Derived Physical Mitral Valve Modeling
    Witschey, Walter R. T.
    Pouch, Alison M.
    McGarvey, Jeremy R.
    Ikeuchi, Kaori
    Contijoch, Francisco
    Levack, Melissa M.
    Yushkevick, Paul A.
    Sehgal, Chandra M.
    Jackson, Benjamin M.
    Gorman, Robert C.
    Gorman, Joseph H., III
    ANNALS OF THORACIC SURGERY, 2014, 98 (02): : 691 - 694
  • [30] Classification of Thyroid Nodules by Using Deep Learning Radiomics Based on Ultrasound Dynamic Video
    Zhang, Chunquan
    Liu, Dan
    Huang, Long
    Zhao, Yu
    Chen, Lili
    Guo, Youmin
    JOURNAL OF ULTRASOUND IN MEDICINE, 2022, 41 (12) : 2993 - 3002