A survey on deep learning-based spatio-temporal action detection

被引:1
|
作者
Wang, Peng [1 ]
Zeng, Fanwei [2 ]
Qian, Yuntao [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou 310007, Zhejiang, Peoples R China
[2] Ant Grp, Hangzhou 310007, Zhejiang, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Computer vision; deep learning; spatio-temporal action detection; SEARCH;
D O I
10.1142/S0219691323500662
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Spatio-temporal action detection (STAD) aims to classify the actions present in a video and localize them in space and time. It has become a particularly active area of research in computer vision because of its explosively emerging real-world applications, such as autonomous driving, visual surveillance and entertainment. Many efforts have been devoted in recent years to build a robust and effective framework for STAD. This paper provides a comprehensive review of the state-of-the-art deep learning-based methods for STAD. First, a taxonomy is developed to organize these methods. Next, the linking algorithms, which aim to associate the frame- or clip-level detection results together to form action tubes, are reviewed. Then, the commonly used benchmark datasets and evaluation metrics are introduced, and the performance of state-of-the-art models is compared. At last, this paper is concluded, and a set of potential research directions of STAD are discussed.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Deep Learning Based Video Spatio-Temporal Modeling for Emotion Recognition
    Fonnegra, Ruben D.
    Diaz, Gloria M.
    HUMAN-COMPUTER INTERACTION: THEORIES, METHODS, AND HUMAN ISSUES, HCI INTERNATIONAL 2018, PT I, 2018, 10901 : 397 - 408
  • [42] A spatio-temporal network for human activity prediction based on deep learning
    Li J.
    Liu H.
    Guo W.
    Chen X.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (04): : 522 - 531
  • [43] A spatio-temporal network for landslide displacement prediction based on deep learning
    Luo H.
    Jiang Y.
    Xu Q.
    Liao L.
    Yan A.
    Liu C.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (10): : 2160 - 2170
  • [44] A Spatio-Temporal Feature Trajectory Clustering Algorithm Based on Deep Learning
    He, Xintai
    Li, Qing
    Wang, Runze
    Chen, Kun
    ELECTRONICS, 2022, 11 (15)
  • [45] Parallel Computing of Spatio-Temporal Model Based on Deep Reinforcement Learning
    Lv, Zhiqiang
    Li, Jianbo
    Xu, Zhihao
    Wang, Yue
    Li, Haoran
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT I, 2021, 12937 : 391 - 403
  • [46] Real Time Violence Detection Based on Deep Spatio-Temporal Features
    Xia, Qing
    Zhang, Ping
    Wang, JingJing
    Tian, Ming
    Fei, Chun
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 157 - 165
  • [47] Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets Using Deep Learning
    Karadayi, Yildiz
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2019, 2020, 11986 : 167 - 182
  • [48] A Spatio-temporal Deep Architecture for Surveillance Event Detection Based on ConvLSTM
    Zhou, Kaihui
    Zhu, Yandong
    Zhao, Yanyun
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [49] Spatio-Temporal Deep Learning-Based Forecasting of Surface Solar Irradiance: Leveraging Satellite Data and Feature Selection
    Kim, Jinyong
    Kim, Eunkyeong
    Jung, Seunghwan
    Kim, Minseok
    Kim, Baekcheon
    Kim, Sungshin
    REMOTE SENSING, 2024, 16 (05)
  • [50] Deep reinforcement learning-based spatio-temporal graph neural network for solving job shop scheduling problem
    Gebreyesus, Goytom
    Fellek, Getu
    Farid, Ahmed
    Hou, Sicheng
    Fujimura, Shigeru
    Yoshie, Osamu
    EVOLUTIONARY INTELLIGENCE, 2025, 18 (01)