Chromatic numbers of Cayley graphs of abelian groups: A matrix method

被引:0
|
作者
Cervantes, Jonathan [1 ]
Krebs, Mike [2 ]
机构
[1] Univ Calif Riverside, Dept Math, Skye Hall,900 Univ Ave, Riverside, CA 92521 USA
[2] Calif State Univ Los Angeles, Dept Math, 5151 State Univ Dr, Los Angeles, CA 91711 USA
关键词
Graph; Chromatic number; Abelian group; Cayley graph; Integer distance graph; Cube-like graph; Circulant graph; Payan's theorem; Zhu's theorem; HARDNESS;
D O I
10.1016/j.laa.2023.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we take a modest first step towards a systematic study of chromatic numbers of Cayley graphs on abelian groups. We lose little when we consider these graphs only when they are connected and of finite degree. As in the work of Heuberger and others, in such cases the graph can be represented by an m x r integer matrix, where we call m the dimension and r the rank. Adding or subtracting rows produces a graph homomorphism to a graph with a matrix of smaller dimension, thereby giving an upper bound on the chromatic number of the original graph. In this article we develop the foundations of this method. As a demonstration of its utility, we provide an alternate proof of Payan's theorem, which states that a cubelike graph (i.e., a Cayley graph on the product Z2 x & BULL; & BULL; & BULL; x Z2 of the integers modulo 2 with itself finitely many times) cannot have chromatic number 3. In a series of follow-up articles using the method of Heuberger matrices, we completely determine the chromatic number in cases with small dimension and rank, as well as prove a generalization of Zhu's theorem on the chromatic number of 6-valent integer distance graphs. & COPY; 2023 The Author(s). Published by Elsevier Inc. This is an (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页码:277 / 295
页数:19
相关论文
共 50 条
  • [21] CAYLEY SIGNED GRAPHS ASSOCIATED WITH ABELIAN GROUPS
    Pranjali
    Kumar, Amit
    Yadav, Tanuja
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (3-4): : 795 - 805
  • [22] Integral Cayley graphs over abelian groups
    Klotz, Walter
    Sander, Torsten
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [23] Rainbow connection numbers of Cayley digraphs on abelian groups
    Ma, Yingbin
    Lu, Zaiping
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 178 - 183
  • [24] Integral mixed Cayley graphs over abelian groups
    Kadyan, Monu
    Bhattacharjya, Bikash
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04):
  • [25] Domination Number of Cayley Graphs on Finite Abelian Groups
    Iranmanesh, Mohammad A.
    Moghaddami, Nasrin
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A5): : 2523 - 2530
  • [26] Spectra of Generalized Cayley Graphs on Finite Abelian Groups
    Zhu, Xiaomin
    Yang, Xu
    Chen, Jing
    ALGEBRA COLLOQUIUM, 2023, 30 (01) : 97 - 110
  • [27] Cayley Graphs of Abelian Groups are Edge-Hamiltonian
    Meng Jixiang\ \ Luo Xinmi (Department of Mathematics Xinjiang University Urumqi
    新疆大学学报(自然科学版)(中英文), 1998, (03) : 2 - 5
  • [28] Bounds on Mincut for Cayley Graphs over Abelian Groups
    Lipets, Vladimir
    THEORY OF COMPUTING SYSTEMS, 2009, 45 (02) : 372 - 380
  • [29] On Cayley Sum Graphs of Non-Abelian Groups
    Amooshahi, Marzieh
    Taeri, Bijan
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 17 - 29
  • [30] Integral pentavalent Cayley graphs on abelian or dihedral groups
    MOHSEN GHASEMI
    Proceedings - Mathematical Sciences, 2017, 127 : 219 - 224