Investigation of Temperature- and Frequency- Dependent Dielectric Study of LiNi0.3Co0.3Mn0.3O2 and LiNi0.3Co0.3Mn0.3Ba0.1O2 for Cathode Materials

被引:2
|
作者
Ullah, Latif [1 ]
Imran, Zahid [2 ]
Sabahat, Sana [1 ]
Shah, Syed Ansar Ali [3 ]
Saleem, Rahman Shah Zaib [4 ]
机构
[1] COMSATS Univ, Dept Chem, Islamabad 44000, Pakistan
[2] COMSATS Univ, Catalysis & Sensing Mat Grp, Dept Phys, Islamabad 44000, Pakistan
[3] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Scotland
[4] Lahore Univ Management Sci, Dept Chem & Chem Engn SBASSE, Lahore 54792, Pakistan
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 33期
关键词
ELECTROCHEMICAL PERFORMANCE; COMPLEX IMPEDANCE; AC-IMPEDANCE; ION; CONDUCTIVITY; RELAXATION; LICOO2;
D O I
10.1021/acs.jpcc.3c02961
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiNi0.3Co0.3Mn0.3O2 (NCM) andLiNi(0.3)Co(0.3)Mn(0.3)Ba(0.1)O(2) (Ba-NCM) cathode materials were synthesizedadopting a sol-gel synthetic protocol (using citric acid asa chelating agent). The crystalline nature of synthesized materialswas evident from XRD analysis. Both samples were found to be almostperfectly matching with an & alpha;-NaFeO2 structure andindexed with the space group R3 m. SEM results show a polygon shape with sharp edges, indicating theirhigh crystallinity. The dielectric study at different temperatures(300-400 K) was done using electrical impedance spectroscopy.The Nyquist plots were fitted using ZView software. It was observedthat multiple relaxation processes were involved, i.e., bulk and grain boundary effects. The conductivity graphs obey Jonscher'suniversal power law. Analysis of frequency-dependent ac conductivityshows that the small polaron hopping (SPH) mechanism is dominant forthe NCM sample, whereas correlated barrier hoping (CBH) was dominantin Ba-NCM. The dielectric spectra of both samples showed a decreasein dielectric constant with an increase in the frequency of the appliedfield.
引用
收藏
页码:16288 / 16296
页数:9
相关论文
共 50 条
  • [21] Rejuvenating LiNi0.5Co0.2Mn0.3O2 cathode directly from battery scraps
    Guo, Yaqing
    Guo, Chi
    Huang, Pengjie
    Han, Qigao
    Wang, Fuhe
    Zhang, Hao
    Liu, Honghao
    Cao, Yuan-Cheng
    Yao, Yonggang
    Huang, Yunhui
    ESCIENCE, 2023, 3 (02):
  • [22] Capacitive effects in Li1-xNi0.3Co0.3Mn0.3O2-LixCy Li-ion cells
    Schmid, Alexander U.
    Lindel, Lukas
    Birke, Kai Peter
    JOURNAL OF ENERGY STORAGE, 2018, 18 : 72 - 83
  • [23] Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping
    Yang Zu-Guang
    Hua Wei-Bo
    Zhang Jun
    Chen Jiu-Hua
    He Feng-Rong
    Zhong Ben-He
    Guo Xiao-Dong
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (05) : 1056 - 1061
  • [24] LiNi0.5Co0.2Mn0.3O2-LiMn0.7Fe0.3PO4混合正极电池性能研究
    袁万颂
    王赞霞
    高文超
    孙晓宾
    电池, 2014, 44 (06) : 331 - 334
  • [25] Influences of Fe Element on the Structural and Electrochemical Performances of LiNi0.5Co0.2Mn0.3O2 Cathode Materials
    Zhang, Qiang
    Zhang, Yun
    Chen, Yanping
    Wang, Zhongyi
    INTEGRATED FERROELECTRICS, 2014, 154 (01) : 135 - 141
  • [26] Electrochemical Degradation Mechanism and Thermal Behaviors of the Stored LiNi0.5Co0.2Mn0.3O2 Cathode Materials
    Chen, Zhiqiang
    Liu, Chaoyue
    Sun, Guiyan
    Kong, Xiangbang
    Lai, Shaobo
    Li, Jiyang
    Zhou, Rong
    Wang, Jing
    Zhao, Jinbao
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (30) : 25454 - 25464
  • [27] Effect of high temperature environment on the performance of LiNi0.5Co0.2Mn0.3O2 battery
    Situ, Wenfu
    Yang, Xiaoqing
    Li, Xinxi
    Zhang, Guoqing
    Rao, Mumin
    Wei, Chao
    Huang, Zhi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 : 743 - 748
  • [28] Anisotropic Strain Evolution of Layered LiNi0.5Co0.2Mn0.3O2 Cathode in Formation Cycle
    Li, Kaili
    Chen, Weixin
    Liu, Zhiling
    Shi, Yuansheng
    Qian, Guoyu
    Lu, Xueyi
    Wei, Bin
    Zhang, Qinghua
    Sun, Yang
    Lu, Xia
    SMALL, 2025, 21 (05)
  • [29] Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes
    Boerner, M.
    Horsthemke, F.
    Kollmer, F.
    Haseloff, S.
    Friesen, A.
    Winter, M.
    Schappacher, F. M.
    JOURNAL OF POWER SOURCES, 2016, 335 : 45 - 55
  • [30] Preparation of LiNi0.5Co0.2Mn0.3O2 by freeze-drying method
    Li, Hao
    Dai, Yongqi
    Li, Xuetian
    Shao, Zhongcai
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 629