Foreign RNA spike-ins enable accurate allele-specific expression analysis at scale

被引:1
|
作者
Mendelevich, Asia [1 ]
Gupta, Saumya [2 ,3 ]
Pakharev, Aleksei
Teodosiadis, Athanasios [1 ]
Mironov, Andrey A. [4 ,5 ]
Gimelbrant, Alexander A. [1 ]
机构
[1] Altius Inst Biomed Sci, 2211 Elliott Ave, Seattle, WA 98121 USA
[2] Boston Childrens Hosp, Stem Cell Program, 300 Longwood Ave, Boston, MA 02115 USA
[3] Harvard Univ, Dept Stem Cell & Regenerat Biol, 7 Divin Ave, Cambridge, MA 02138 USA
[4] Lomonosov Moscow State Univ, Fac Bioengn & Bioinformat, 1-73 Vorobiovy Gory,Lab Bldg B, Moscow 119992, Russia
[5] Russian Acad Sci, Inst Informat Transmiss Problems, 19 Bolshoi Karetny Per, Moscow 127994, Russia
关键词
MONOALLELIC GENE-EXPRESSION; NOISE;
D O I
10.1093/bioinformatics/btad254
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Analysis of allele-specific expression is strongly affected by the technical noise present in RNA-seq experiments. Previously, we showed that technical replicates can be used for precise estimates of this noise, and we provided a tool for correction of technical noise in allele-specific expression analysis. This approach is very accurate but costly due to the need for two or more replicates of each library. Here, we develop a spike-in approach which is highly accurate at only a small fraction of the cost. Results: We show that a distinct RNA added as a spike-in before library preparation reflects technical noise of the whole library and can be used in large batches of samples. We experimentally demonstrate the effectiveness of this approach using combinations of RNA from species distinguishable by alignment, namely, mouse, human, and Caenorhabditis elegans. Our new approach, controlFreq, enables highly accurate and computationally efficient analysis of allele-specific expression in (and between) arbitrarily large studies at an overall cost increase of similar to 5%. Availability and implementation: Analysis pipeline for this approach is available at GitHub as R package controlFreq (github.com/gimel brantlab/controlFreq).
引用
收藏
页码:i431 / i439
页数:9
相关论文
共 50 条
  • [31] Analysis of allele-specific RNA transcription in FSHD by RNA-DNA FISH in single myonuclei
    Masny, Peter S.
    Chan, On Ying A.
    de Greef, Jessica C.
    Bengtsson, Ulla
    Ehrlich, Melanie
    Tawil, Rabi
    Lock, Leslie F.
    Hewitt, Jane E.
    Stocksdale, Jennifer
    Martin, Jorge H.
    van der Maarel, Silvere M.
    Winokur, Sara T.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2010, 18 (04) : 448 - 456
  • [32] ASSAYING DIFFERENTIAL RIBOSOMAL-RNA GENE-EXPRESSION WITH ALLELE-SPECIFIC PROBES
    JUPE, ER
    ZIMMER, EA
    MOLECULAR EVOLUTION: PRODUCING THE BIOCHEMICAL DATA, 1993, 224 : 541 - 552
  • [33] Analysis of allele-specific expression using RNA-seq of the Korean native pig and Landrace reciprocal cross
    Ahn, Byeongyong
    Choi, Min-Kyeung
    Yum, Joori
    Cho, In-Cheol
    Kim, Jin-Hoi
    Park, Chankyu
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2019, 32 (12): : 1816 - 1825
  • [34] QuASAR-MPRA: accurate allele-specific analysis for massively parallel reporter assays
    Kalita, Cynthia A.
    Moyerbrailean, Gregory A.
    Brown, Christopher
    Wen, Xiaoquan
    Luca, Francesca
    Pique-Regi, Roger
    BIOINFORMATICS, 2018, 34 (05) : 787 - 794
  • [35] Global differential allele-specific expression (DASE) analysis in mammary epithelial transcriptome
    Gao, Chuan
    Slater, Carolyn M.
    Devarajan, Karthik
    Zhou, Yan
    Daly, Mary B.
    Chen, Xiaowei
    CANCER RESEARCH, 2012, 72
  • [36] Estimates of allele-specific expression in Drosophila with a single genome sequence and RNA-seq data
    Quinn, Andrew
    Juneja, Punita
    Jiggins, Francis M.
    BIOINFORMATICS, 2014, 30 (18) : 2603 - 2610
  • [37] Transcriptome-based analysis of allele-specific gene expression in hepatocellular carcinoma
    Krivtsova, O.
    Vinogradov, D.
    Nabieva, E.
    Logacheva, M.
    Penin, A.
    Lazarevich, N.
    FEBS JOURNAL, 2017, 284 : 261 - 261
  • [38] Detecting Allele-Specific Alternative Splicing from Population-Scale RNA-Seq Data
    Demirdjian, Levon
    Xu, Yungang
    Bahrami-Samani, Emad
    Pan, Yang
    Stein, Shayna
    Xie, Zhijie
    Park, Eddie
    Wu, Ying Nian
    Xing, Yi
    AMERICAN JOURNAL OF HUMAN GENETICS, 2020, 107 (03) : 461 - 472
  • [39] A Bayesian approach for estimating allele-specific expression from RNA-Seq data with diploid genomes
    Naoki Nariai
    Kaname Kojima
    Takahiro Mimori
    Yosuke Kawai
    Masao Nagasaki
    BMC Genomics, 17
  • [40] Analysis of allelic differential expression in the human genome using allele-specific serial analysis of gene expression tags
    Vidal, Daniel Onofre
    de Souza, Jorge Estefano S.
    Pires, Lilian Campos
    Masotti, Cibele
    Matos Salim, Anna Christina
    Ferreira Costa, Maria Cristina
    Favoretto Galante, Pedro Alexandre
    de Souza, Sandro Jose
    Camargo, Anamaria Aranha
    GENOME, 2011, 54 (02) : 120 - 127