Synergistic use of Sentinel-1, Sentinel-2, and Landsat 8 in predicting forest variables

被引:8
|
作者
Fang, Gengsheng [1 ,2 ]
Xu, Hao [3 ]
Yang, Sheng-, I [4 ]
Lou, Xiongwei [1 ,2 ]
Fang, Luming [1 ,2 ]
机构
[1] Zhejiang A&F Univ, Coll Math & Comp Sci, Hangzhou 311300, Peoples R China
[2] Zhejiang A&F Univ, Key Lab Forestry Intelligent Monitoring & Informat, Hangzhou 311300, Peoples R China
[3] Informat Publ Serv Ctr Zhejiang Prov Forestry Bur, Hangzhou, Peoples R China
[4] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Knoxville, TN USA
关键词
Remote sensing; Forest variables; SAR; Satellite images; Sensors; GROWING STOCK VOLUME; CANOPY COVER ESTIMATION; ABOVEGROUND BIOMASS; SPECTRAL INDEXES; L-BAND; IMAGERY; DENSITY; HEIGHT; LIDAR;
D O I
10.1016/j.ecolind.2023.110296
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Forest variables measurement is indispensable to supervising the dynamic of forest carbon storage. As commonly quantified forest variables, canopy cover (CC), diameter at breast height (DBH), and tree height (TH) were the predicted objects in our study. Recently, remote sensing technology, with high efficiency and wide temporal and spatial coverage, has been extensively used in practice. However, integrating open access satellite resources Sentinel-1 (S1), Sentinel-2 (S2), and Landsat 8 (L8) to quantify forest CC, DBH, and TH has not been extensively examined in the literature. In this study, we explored the potential of individual satellite bands/indices and the integration of different sensors in predicting mean CC, mean DBH, and mean TH in the plots dominated by four tree species (total area 102,887.6 ha). We acquired the satellite patterns of S1, S2, and L8 covered our research plots in 2017, and extracted the mean pixel values of the spectral images for every plot we detected. Specifically, seven sets of features derived from the satellite images of S1, S2, and L8 were used to predict CC, DBH, and TH for the survey plots. The results mainly indicated that group S2 + L8 (RMSEr (the relative root mean square error) = 17.9%, 21.0%, 23.0%) or S2 + L8 + S1 (RMSEr = 17. 8%, 21.0%, 23.1%) achieved the best accuracy for CC, DBH, and TH of all plots. Additionally, group S2 + L8 outperformed the other groups within two sensors and was superior to the individual sensors. Adding S1 synthetic aperture radar (SAR, the sensor carried by S1) had no evident improvement or deviation for most models, nevertheless, numerous bands/indices of SAR occupied important positions in variable importance and were been selected by stepwise regression, which denoted that it is available and valuable for forest parameters of some dominant tree species. Moreover, shortwave infrared (SWIR) bands played a crucial role in the three forest parameters prediction during the rainy season. SWIR bands (RMSEr = 20.5%), NIR bands (RMSEr = 24.1%), and red-edge bands (RMSEr = 27.1%) exerted the most significant implication for predicting CC, DBH, and TH apiece as univariate models. Green bands and NIR also occupied more positions of higher variable importance in multivariate models for estimating DBH and TH, while SWIR took up more for CC in all dominant species. Furthermore, non-parametric models outperformed the parametric model on the whole. In the meanwhile, the best models also were influenced by the data analysis methods.In a nutshell, a combination of multiple satellite sensors was proposed for forest variable selection, especially different optical sensors. SAR data were also inspired to be pitched in related forest measurement work, but it requires some data processing before applying to the research in many cases.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Deep Forest classifier for wetland mapping using the combination of Sentinel-1 and Sentinel-2 data
    Jamali, Ali
    Mahdianpari, Masoud
    Brisco, Brian
    Granger, Jean
    Mohammadimanesh, Fariba
    Salehi, Bahram
    [J]. GISCIENCE & REMOTE SENSING, 2021, 58 (07) : 1072 - 1089
  • [32] JOINTLY EXPLOITING SENTINEL-1 AND SENTINEL-2 FOR URBAN MAPPING
    Iannelli, Gianni Cristian
    Gamba, Paolo
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8209 - 8212
  • [33] DSNUNet: An Improved Forest Change Detection Network by Combining Sentinel-1 and Sentinel-2 Images
    Jiang, Jiawei
    Xing, Yuanjun
    Wei, Wei
    Yan, Enping
    Xiang, Jun
    Mo, Dengkui
    [J]. REMOTE SENSING, 2022, 14 (19)
  • [34] Preliminary Comparison of Sentinel-2 and Landsat 8 Imagery for a Combined Use
    Mandanici, Emanuele
    Bitelli, Gabriele
    [J]. REMOTE SENSING, 2016, 8 (12):
  • [35] Fusing Landsat-8, Sentinel-1, and Sentinel-2 Data for River Water Mapping Using Multidimensional Weighted Fusion Method
    Liu, Qihang
    Zhang, Shiqiang
    Wang, Ninglian
    Ming, Yisen
    Huang, Chang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [36] An improved fusion of Landsat-7/8, Sentinel-2, and Sentinel-1 data for monitoring alfalfa: Implications for crop remote sensing
    Chen, Jiang
    Zhang, Zhou
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 124
  • [37] Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images
    Wang, Jie
    Xiao, Xiangming
    Liu, Luo
    Wu, Xiaocui
    Qin, Yuanwei
    Steiner, Jean L.
    Dong, Jinwei
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 247
  • [38] Spatial Transferability of Random Forest Models for Crop Type Classification Using Sentinel-1 and Sentinel-2
    Orynbaikyzy, Aiym
    Gessner, Ursula
    Conrad, Christopher
    [J]. REMOTE SENSING, 2022, 14 (06)
  • [39] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [40] Effectiveness of Sentinel-1 and Sentinel-2 for flood detection assessment in Europe
    Tarpanelli, Angelica
    Mondini, Alessandro C.
    Camici, Stefania
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2022, 22 (08) : 2473 - 2489