Meta-learning of personalized thermal comfort model and fast identification of the best personalized thermal environmental conditions

被引:5
|
作者
Chen, Liangliang [1 ]
Ermis, Ayca [1 ]
Meng, Fei [2 ]
Zhang, Ying [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Personalized thermal comfort model; Meta-learning; Thermal sensation prediction; Data-driven modeling; FANGERS MODEL; PREFERENCE; EFFICIENCY; INFERENCE;
D O I
10.1016/j.buildenv.2023.110201
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The model of personalized thermal comfort can be learned via various machine learning algorithms and used to improve the individuals' thermal comfort levels with potentially less energy consumption of HVAC systems. However, the learning of such a model typically requires a substantial number of thermal votes from the considered occupant, and the environmental conditions needed for collecting some votes may be undesired by the occupant in order to obtain a model with good generalization ability. In this paper, we propose to use a meta-learning algorithm to reduce the required number of personalized thermal votes so that a personalized thermal comfort model can be obtained with only a small number of feedback. With the learned meta-model, we derive a method based on the backpropagation of neural networks to quickly identify the best environmental and personal conditions for a specific occupant. The proposed identification algorithm has an additional advantage that the thermal comfort, indicated by the mean thermal sensation value, improves incrementally during the data collection process. We use the ASHRAE global thermal comfort database II to verify that the meta-learning algorithm can achieve an improved prediction accuracy after using 5 thermal sensation votes from an occupant to make adaptations. In addition, we show the effectiveness of the fast identification algorithm for the best personalized thermal environmental conditions with a thermal sensation generation model built from the PMV model.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] PERSONALIZED FACE AUTHENTICATION BASED ON FEW-SHOT META-LEARNING
    Shin, Chaehun
    Lee, Jangho
    Na, Byunggook
    Yoon, Sungroh
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3897 - 3901
  • [42] Personalized Learning with Limited Data on Edge Devices using Federated Learning and Meta-Learning
    Voleti, Kousalya Soumya Lahari
    Ho, Shen-Shyang
    2023 IEEE/ACM SYMPOSIUM ON EDGE COMPUTING, SEC 2023, 2023, : 378 - 382
  • [43] Communication-Efficient Personalized Federated Meta-Learning in Edge Networks
    Yu, Feng
    Lin, Hui
    Wang, Xiaoding
    Garg, Sahil
    Kaddoum, Georges
    Singh, Satinder
    Hassan, Mohammad Mehedi
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (02): : 1558 - 1571
  • [44] Few-shot personalized saliency prediction using meta-learning
    Luo, Xinhui
    Liu, Zhi
    Wei, Weijie
    Ye, Linwei
    Zhang, Tianhong
    Xu, Lihua
    Wang, Jijun
    IMAGE AND VISION COMPUTING, 2022, 124
  • [45] The Adaptive Personalized Federated Meta-Learning for Anomaly Detection of Industrial Equipment
    Liu, Yuange
    Bao, Zhicheng
    Wang, Yuqian
    Zeng, Xingjie
    Xu, Liang
    Zhang, Weishan
    Zhao, Hongwei
    Yu, Zepei
    IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, 2022, 6 : 832 - 836
  • [46] Personalized 360-Degree Video Streaming: A Meta-Learning Approach
    Lu, Yiyun
    Zhu, Yifei
    Wang, Zhi
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3143 - 3151
  • [47] Model-based multivariable regression model for thermal comfort in naturally ventilated spaces with personalized ventilation
    Itani, Mariam
    Ghaddar, Dalia
    Ghaddar, Nesreen
    Ghali, Kamel
    JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2021, 14 (01) : 78 - 93
  • [48] Feature selection and Gaussian Process regression for personalized thermal comfort prediction
    Guenther, Janine
    Sawodny, Oliver
    BUILDING AND ENVIRONMENT, 2019, 148 : 448 - 458
  • [49] A novel personalized thermal comfort control, responding to user sensation feedbacks
    Nouvel, Romain
    Alessi, Franck
    BUILDING SIMULATION, 2012, 5 (03) : 191 - 202
  • [50] Personalized conditioning and its impact on thermal comfort and energy performance - A review
    Vesely, Michal
    Zeiler, Wim
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 34 : 401 - 408