Vascularized polypeptide hydrogel modulates macrophage polarization for wound healing

被引:49
|
作者
Chen, Zhijie [1 ,3 ]
Wang, Lianlian [2 ]
Guo, Changjun [3 ]
Qiu, Minglong [3 ]
Cheng, Liang [3 ]
Chen, Kaizhe [3 ]
Qi, Jin [3 ]
Deng, Lianfu [3 ]
He, Chuan [3 ]
Li, Xinming [2 ]
Yan, Yufei [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 6, Dept Orthopaed Surg, Sch Med, Shanghai 200233, Peoples R China
[2] Soochow Univ, Coll Chem, Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
[3] Shanghai Jiao Tong Univ, Ruijin Hosp, Shanghai Inst Traumatol & Orthopaed, Dept Orthopaed,Shanghai Key Lab Prevent & Treatmen, 197 Ruijin 2nd Rd, Shanghai 200025, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Hydrogel; Immunoregulation; Vasculogenesis; Peptide; Wound healing; GROWTH-FACTOR; SILK FIBROIN; IN-VITRO; VEGF; ANGIOGENESIS; EXPRESSION; DELIVERY; PEPTIDE; CELLS; FLT1;
D O I
10.1016/j.actbio.2022.11.002
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Wound repair involves a sophisticated process that includes angiogenesis, immunoregulation and colla-gen deposition. However, weak revascularization performance and the lack of biochemical cues to trig-ger immunomodulatory function currently limit biomaterial applications for skin regeneration and tis-sue engineering. Herein, we fabricate a new bioactive polypeptide hydrogel (QK-SF) constituted by silk fibroin (SF) and a vascular endothelial growth factor mimetic peptide KLTWQELYQLKYKGI (QK) for tis-sue regeneration by simultaneously promoting vascularization and macrophage polarization. Our results showed that this QK-SF hydrogel can be prepared via an easy manufacturing process, and exhibited good gel stability and low cytotoxicity to cultured human umbilical vein endothelial cells (HUVECs) via both live/dead and cell counting kit-8 assays. Importantly, this QK-SF hydrogel triggered macrophage polar-ization from M1 into M2, as exemplified by the enhanced expression of the M2 marker and decreased expression of the M1 marker in RAW264.7 cells. Furthermore, the QK-SF hydrogel showed high capacity for inducing endothelial growth, migration and angiogenesis, which were proved by increased expression of angiogenesis-related genes in HUVECs. Consistent with in vitro findings, in vivo data show that the QK-SF hydrogel promoted M2 polarization, keratinocyte differentiation, and collagen deposition in the mouse skin wound model in immunohistochemistry assay. Furthermore, this QK-SF hydrogel can reduce inflammation, induce angiogenesis and promote wound healing as exemplified by the increased vessel formation and decreased wound area in the mouse skin wound model. Altogether, these results indicate that the bioactive QK-SF hydrogel plays dual functional roles in promoting angiogenesis and immunoreg-ulation for tissue regeneration.Statement of significance The QK-SF hydrogel plays dual functional roles in promoting angiogenesis and immunoregulation for tis-sue repair and wound healing. The QK-SF hydrogel can be prepared via an easy manufacturing process, and exhibited good gel stability and low cytotoxicity to cultured HUVECs. The QK-SF hydrogel triggered macrophage polarization from M1 into M2. The QK-SF hydrogel showed high capacity for inducing en-dothelial growth, migration and angiogenesis. The QK-SF hydrogel promoted M2 polarization, keratinocyte differentiation, and collagen deposition.(c) 2022 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页码:218 / 234
页数:17
相关论文
共 50 条
  • [21] Macrophage polarization in wound healing: role of aloe vera/chitosan nanohydrogel
    Fatemeh Ashouri
    Fatemeh Beyranvand
    Nasim Beigi Boroujeni
    Majid Tavafi
    Ali Sheikhian
    Ali Mohammad Varzi
    Somayeh Shahrokhi
    Drug Delivery and Translational Research, 2019, 9 : 1027 - 1042
  • [22] Darutoside promotes skin wound healing via regulating macrophage polarization
    Gao, Linpei
    Su, Jing
    Guo, Lijia
    Lin, Sheng
    Xu, Junji
    Liu, Yi
    MOLECULAR IMMUNOLOGY, 2025, 181 : 129 - 138
  • [23] Lack of lymphocytes impairs macrophage polarization and angiogenesis in diabetic wound healing
    Seraphim, Patricia M.
    Leal, Ermelindo C.
    Moura, Joao
    Goncalves, Pedro
    Goncalves, Jenifer P.
    Carvalho, Eugenia
    LIFE SCIENCES, 2020, 254
  • [24] Multivalent effects of heptamannosylated β-cyclodextrins on macrophage polarization to accelerate wound healing
    Zhang, Yuan-Ning
    Zhao, Ruibo
    Cao, Jie
    Chen, Bowen
    Luo, Dandan
    Lu, Jiaju
    Iqbal, Muhammed Zubair
    Zhang, Quan
    Kong, Xiangdong
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2021, 208
  • [25] Macrophage polarization in wound healing: role of aloe vera/chitosan nanohydrogel
    Ashouri, Fatemeh
    Beyranvand, Fatemeh
    Boroujeni, Nasim Beigi
    Tavafi, Majid
    Sheikhian, Ali
    Varzi, Ali Mohammad
    Shahrokhi, Somayeh
    DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2019, 9 (06) : 1027 - 1042
  • [26] Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review)
    Song, Jielin
    Wu, Yuqing
    Chen, Yunli
    Sun, Xu
    Zhang, Zhaohui
    MOLECULAR MEDICINE REPORTS, 2025, 31 (01)
  • [27] Microenvironment-responsive Bletilla polysaccharide hydrogel with photothermal antibacterial and macrophage polarization-regulating properties for diabetic wound healing
    Hu, Zhengbo
    Zhao, Kai
    Rao, Xin
    Chen, Xingcan
    Niu, Yujing
    Zhang, Qiantao
    Zhou, Mingyuan
    Chen, Yuchi
    Zhou, Fangmei
    Yu, Jie
    Ding, Zhishan
    Zhu, Bingqi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 283
  • [28] Stimuli-Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing
    Lee, Jieun
    Dutta, Sayan Deb
    Acharya, Rumi
    Park, Hyeonseo
    Kim, Hojin
    Randhawa, Aayushi
    Patil, Tejal V.
    Ganguly, Keya
    Luthfikasari, Rachmi
    Lim, Ki-Taek
    ADVANCED HEALTHCARE MATERIALS, 2024, 13 (04)
  • [29] Chitosan-based hydrogel dressings for diabetic wound healing via promoting M2 macrophage-polarization
    Wei, Xuelian
    Liu, Caikun
    Li, Zhiqian
    Gu, Zhengxiang
    Yang, Junxiao
    Luo, Kui
    CARBOHYDRATE POLYMERS, 2024, 331
  • [30] Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization
    Zhou, Zhipeng
    Deng, Tuo
    Tao, Maixian
    Lin, Lisha
    Sun, Luyun
    Song, Xuemei
    Gao, Dongxiu
    Li, Jixing
    Wang, Zhongjuan
    Wang, Xingzi
    Li, Jinpeng
    Jiang, Zexiu
    Luo, Lan
    Yang, Lian
    Wu, Mingyi
    BIOMATERIALS, 2023, 299