Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers

被引:5
|
作者
Smiga-Matuszowicz, Monika [1 ]
Wlodarczyk, Jakub [2 ]
Skorupa, Malgorzata [1 ,3 ]
Czerwinska-Glowka, Dominika [1 ]
Folta, Kaja [1 ]
Pastusiak, Malgorzata [2 ]
Adamiec-Organisciok, Malgorzata [4 ,5 ]
Skonieczna, Magdalena [4 ,5 ]
Turczyn, Roman [1 ,6 ]
Sobota, Michal [2 ]
Krukiewicz, Katarzyna [1 ,6 ]
机构
[1] Silesian Tech Univ, Dept Phys Chem & Technol Polymers, M Strzody 9, PL-44100 Gliwice, Poland
[2] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowska St 34, PL-41819 Zabrze, Poland
[3] Silesian Tech Univ, Joint Doctoral Sch, Akad 2A, PL-44100 Gliwice, Poland
[4] Silesian Tech Univ, Biotechnol Ctr, B Krzywoustego 8, PL-44100 Gliwice, Poland
[5] Silesian Tech Univ, Fac Automat Control Elect & Comp Sci, Dept Syst Biol & Engn, Akad 16, PL-44100 Gliwice, Poland
[6] Silesian Tech Univ, Ctr Organ & Nanohybrid Elect, S Konarskiego 22B, PL-44100 Gliwice, Poland
关键词
blood vessel regeneration; electrospun scaffolds; PLGA; poly(isosorbide sebacate); DIAMETER BLOOD-VESSELS; DRUG-DELIVERY; ISOSORBIDE; BIOMATERIALS; DEGRADATION; FABRICATION;
D O I
10.3390/ijms24021190
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper, we have introduced a scaffold material made of poly(L-lactide-co-glycolide)/poly(isosorbide sebacate) (PLGA/PISEB) fibers fabricated in the course of an electrospinning process, and confirmed its biocompatibility towards human umbilical vein endothelial cells (HUVEC). The resulting material was characterized by a bimodal distribution of fiber diameters, with the median of 1.25 mu m and 4.75 mu m. Genotyping of HUVEC cells collected after 48 h of incubations on the surface of PLGA/PISEB scaffolds showed a potentially pro-angiogenic expression profile, as well as anti-inflammatory effects of this material. Over the course of a 12-week-long hydrolytic degradation process, PLGA/PISEB fibers were found to swell and disintegrate, resulting in the formation of highly developed structures resembling seaweeds. It is expected that the change in the scaffold structure should have a positive effect on blood vessel regeneration, by allowing cells to penetrate the scaffold and grow within a 3D structure of PLGA/PISEB, as well as stabilizing newly-formed endothelium during hydrolytic expansion.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Biocompatibility of poly(MPC-co-EHMA)/poly(L-lactide-co-glycolide) blends
    Khang, G
    Choi, MK
    Rhee, JM
    Lee, SJ
    Lee, HB
    Iwasaki, Y
    Nakabayashi, N
    Ishihara, K
    KOREA POLYMER JOURNAL, 2001, 9 (02): : 107 - 115
  • [42] Designing Biodegradable Wafers Based on Poly(L-lactide-co-glycolide) and Poly(glycolide-co-ε-caprolactone) for the Prolonged and Local Release of Idarubicin for the Therapy of Glioblastoma Multiforme
    Turek, Artur
    Stoklosa, Katarzyna
    Borecka, Aleksandra
    Paul-Samojedny, Monika
    Kaczmarczyk, Bozena
    Marcinkowski, Andrzej
    Kasperczyk, Janusz
    PHARMACEUTICAL RESEARCH, 2020, 37 (05)
  • [43] Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(D,L-lactide-co-glycolide) Biphasic Scaffolds for Bone Tissue Regeneration
    Pecorini, Gianni
    Braccini, Simona
    Parrini, Gianluca
    Chiellini, Federica
    Puppi, Dario
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (07)
  • [45] Partial solubility parameters of poly(D,L-lactide-co-glycolide)
    Schenderlein, S
    Lück, M
    Müller, BW
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2004, 286 (1-2) : 19 - 26
  • [46] Morphological characterization of electrospun nano-fibrous membranes of biodegradable poly(L-lactide) and poly(lactide-co-glycolide)
    Kim, HS
    Kim, K
    Jin, HJ
    Chin, IJ
    MACROMOLECULAR SYMPOSIA, 2005, 224 : 145 - 154
  • [47] Biodegradation of poly(L-lactide-co-glycolide) tube stents in bile
    Xu, Xiaoyi
    Liu, Tongiun
    Zhang, Kai
    Liu, Shaohui
    Shen, Zhen
    Li, Yuxin
    Jing, Xiabin
    POLYMER DEGRADATION AND STABILITY, 2008, 93 (04) : 811 - 817
  • [48] Synthesis and characterization of highly-magnetic biodegradable poly(D,L-lactide-co-glycolide) nanospheres
    Liu, Xianqiao
    Kaminski, Michael D.
    Chen, Haitao
    Torno, Michael
    Taylor, LaToyia
    Rosengart, Axel J.
    JOURNAL OF CONTROLLED RELEASE, 2007, 119 (01) : 52 - 58
  • [49] Imparting Superhydrophobicity to Biodegradable Poly(lactide-co-glycolide) Electrospun Meshes
    Kaplan, Jonah A.
    Lei, Hongyi
    Liu, Rong
    Padera, Robert
    Colson, Yolonda L.
    Grinstaff, Mark W.
    BIOMACROMOLECULES, 2014, 15 (07) : 2548 - 2554
  • [50] Separate Crystallization and Cocrystallization of Poly(L-lactide) in the Presence of L-Lactide-Based Copolymers With Low Crystallizability, Poly(L-lactide-co-glycolide) and Poly(L-lactide-co-D-lactide)
    Tsuji, Hideto
    Tashiro, Kohji
    Bouapao, Leevameng
    Hanesaka, Makoto
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2012, 213 (20) : 2099 - 2112