Aggregation of Electrochemically Active Conjugated Organic Molecules and Its Impact on Aqueous Organic Redox Flow Batteries

被引:41
|
作者
Xiang, Zhipeng [1 ]
Li, Wenjin [1 ]
Wan, Kai [1 ]
Fu, Zhiyong [1 ]
Liang, Zhenxing [1 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangdong Prov Key Lab Fuel Cell Technol, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Aggregation-Regulated Electrochemistry; Methyl Viologen; Redox Flow Battery; Ultramicroelectrode; CATION; CAPACITY; REDUCTION; ANOLYTE; DIMER; ION;
D O I
10.1002/anie.202214601
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecule aggregation in solution is acknowledged to be universal and can regulate the molecule's physiochemical properties, which however has been rarely investigated in electrochemistry. Herein, an electrochemical method is developed to quantitatively study the aggregation behavior of the target molecule methyl viologen dichloride. It is found that the oxidation state dicationic ions stay discrete, while the singly-reduced state monoradicals yield a concentration-dependent aggregation behavior. As a result, the molecule's energy level and its redox potential can be effectively regulated. This work does not only provide a method to investigate the molecular aggregation, but also demonstrates the feasibility to tune redox flow battery's performance by regulating the aggregation behavior.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries
    Jing, Yan
    Zhao, Evan Wenbo
    Goulet, Marc-Antoni
    Bahari, Meisam
    Fell, Eric M.
    Jin, Shijian
    Davoodi, Ali
    Jonsson, Erlendur
    Wu, Min
    Grey, Clare P.
    Gordon, Roy G.
    Aziz, Michael J.
    NATURE CHEMISTRY, 2022, 14 (10) : 1103 - +
  • [42] Solar Redox Flow Batteries with Organic Redox Couples in Aqueous Electrolytes: A Minireview
    Wedege, Kristina
    Bae, Dowon
    Smith, Wilson A.
    Mendes, Adelio
    Bentien, Anders
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (45): : 25729 - 25740
  • [43] Organic redox active polymers for nonaqueous flow cell batteries
    Gavvalapalli, Nagarjuna
    Rodriguez-Lopez, Joaquin
    Moore, Jeffrey S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [44] Static theoretical investigations of organic redox active materials for redox flow batteries
    Zaichenko, Aleksandr
    Achazi, Andreas J.
    Kunz, Simon
    Wegner, Hermann A.
    Janek, Juergen
    Mollenhauer, Doreen
    PROGRESS IN ENERGY, 2024, 6 (01):
  • [45] Organic electrolytes for aqueous organic flow batteries
    Liu, Y.
    Chen, Q.
    Sun, P.
    Li, Y.
    Yang, Z.
    Xu, T.
    MATERIALS TODAY ENERGY, 2021, 20
  • [46] Benzidine Derivatives as Electroactive Materials for Aqueous Organic Redox Flow Batteries
    Flores-Leonar, MarthaM.
    Acosta-Tejada, Gloria
    Laguna, Humberto G.
    Amador-Bedolla, Carlos
    Sanchez-Castellanos, Mariano
    Ugalde-Saldivar, Victor M.
    ACS OMEGA, 2023, 8 (36): : 32432 - 32443
  • [47] Molecular Engineering Strategies for Symmetric Aqueous Organic Redox Flow Batteries
    Fornari, Rocco Peter
    Mesta, Murat
    Hjelm, Johan
    Vegge, Tejs
    de Silva, Piotr
    ACS MATERIALS LETTERS, 2020, 2 (03): : 239 - 246
  • [48] Modified viologen as an efficient anolyte for aqueous organic redox flow batteries
    Ambrose, Bebin
    Naresh, Raghu Pandiyan
    Ulaganathan, Mani
    Ragupathy, Pitchai
    Kathiresan, Murugavel
    MATERIALS LETTERS, 2022, 314
  • [49] High energy density anolyte for aqueous organic redox flow batteries
    Wang, Wei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [50] An organic bifunctional redox active material for symmetric aqueous redox flow battery
    Nambafu, Gabriel Sikukuu
    Siddharth, Kumar
    Zhang, Cheng
    Zhao, Tianshou
    Chen, Qing
    Amine, Khalil
    Shao, Minhua
    NANO ENERGY, 2021, 89