Dynamics and density function of a stochastic differential infectivity epidemic model with Ornstein-Uhlenbeck process

被引:6
|
作者
Shi, Zhenfeng [1 ,2 ]
Jiang, Daqing [1 ,3 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao, Shandong, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun, Jilin, Peoples R China
[3] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
density function; differential infectivity epidemic model; exponential extinction; Ornstein-Uhlenbeck process; persistence in the mean; NUMERICAL-SIMULATION; THRESHOLD; BEHAVIOR; SIR; TRANSMISSION;
D O I
10.1002/mma.8901
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a stochastic hybrid differential infectivity epidemic model with standard incidence perturbed by mean-reverting Ornstein-Uhlenbeck process. Applying Lyapunov method, we first show existence and uniqueness of the global solution. Then sufficient conditions for persistence in the mean and exponential extinction of the infectious disease are obtained. Furthermore, by solving the corresponding Fokker-Planck equation, we derive that the global solution around the endemic equilibrium follows a unique probability density function. Finally, numerical simulations are employed to demonstrate the analytical results.
引用
收藏
页码:6245 / 6261
页数:17
相关论文
共 50 条
  • [41] Dynamics and optimal therapy of a stochastic HTLV-1 model incorporating Ornstein-Uhlenbeck process
    Chen, Siyu
    Liu, Zhijun
    Zhang, Xinan
    Wang, Lianwen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 9874 - 9896
  • [42] Perturbation Theory for a Stochastic Process with Ornstein-Uhlenbeck Noise
    Michael Wilkinson
    Journal of Statistical Physics, 2010, 139 : 345 - 353
  • [44] Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein-Uhlenbeck process
    Han, Cheng
    Wang, Yan
    Jiang, Daqing
    CHAOS SOLITONS & FRACTALS, 2023, 175
  • [45] A generalized stochastic competitive system with Ornstein-Uhlenbeck process
    Tian, Baodan
    Yang, Liu
    Chen, Xingzhi
    Zhang, Yong
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (01)
  • [46] A stochastic predator-prey model with Ornstein-Uhlenbeck process: Characterization of stationary distribution, extinction and probability density function
    Zhang, Xinhong
    Yang, Qing
    Jiang, Daqing
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 122
  • [47] A stochastic equivalence approach for an Ornstein-Uhlenbeck process driven power system dynamics
    Hirpara, R. H.
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2021, 17 (02) : 47 - 58
  • [48] Analyzing a stochastic process driven by Ornstein-Uhlenbeck noise
    Lehle, B.
    Peinke, J.
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [49] Dynamics and numerical simulations of a generalized mosquito-borne epidemic model using the Ornstein-Uhlenbeck process: Stability, stationary distribution, and probability density function
    Niu, Wenhui
    Zhang, Xinhong
    Jiang, Daqing
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3777 - 3818
  • [50] Analysis of a stochastic. S E Iu Ir R epidemic model incorporating the Ornstein-Uhlenbeck process
    Mediani, Mhammed
    Slama, Abdeldjalil
    Boudaoui, Ahmed
    Abdeljawad, Thabet
    HELIYON, 2024, 10 (16)