Calf Posture Recognition Using Convolutional Neural Network

被引:1
|
作者
Tan Chen Tung [1 ]
Khairuddin, Uswah [1 ]
Shapiai, Mohd Ibrahim [1 ]
Nor, Norhariani Md [2 ]
Hiew, Mark Wen Han [2 ]
Suhaimie, Nurul Aisyah Mohd [3 ]
机构
[1] Univ Teknol Malaysia, Malaysia Japan Int Inst Technol, Kuala Lumpur 54100, Malaysia
[2] Univ Putra Malaysia, Fac Vet Med, Serdang 43400, Selangor, Malaysia
[3] Fac Bioresources & Food Ind, Besut 22200, Malaysia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 74卷 / 01期
关键词
Calf posture; machine vision; deep learning; transfer learning; IMAGE-ANALYSIS; COWS; BEHAVIOR; PREDICTION; WEIGHT;
D O I
10.32604/cmc.2023.029277
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dairy farm management is crucial to maintain the longevity of the farm, and poor dairy youngstock or calf management could lead to gradually deteriorating calf health, which often causes premature death. This was found to be the most neglected part among the management workflows in Malaysia and has caused continuous loss over the recent years. Calf posture recognition is one of the effective methods to monitor calf behaviour and health state, which can be achieved by monitoring the calf behaviours of standing and lying where the former depicts active calf, and the latter, passive calf. Calf posture recognition module is an important component of some automated calf monitoring systems, as the system requires the calf to be in a standing posture before proceeding to the next stage of monitoring, or at the very least, to monitor the activeness of the calves. Calf posture such as standing or resting can easily be distinguished by human eye, however, to be recognized by a machine, it will require more complicated frameworks, particularly one that involves a deep learning neural networks model. Large number of high -quality images are required to train a deep learning model for such tasks. In this paper, multiple Convolutional Neural Network (CNN) architectures were compared, and the residual network (ResNet) model (specifically, ResNet-50) was ultimately chosen due to its simplicity, great performance, and decent inference time. Two ResNet-50 models having the exact same architecture and configuration have been trained on two different image datasets respectively sourced by separate cameras placed at different angle. There were two camera placements to use for comparison because camera placements can signifi-cantly impact the quality of the images, which is highly correlated to the deep learning model performance. After model training, the performance for both CNN models were 99.7% and 99.99% accuracies, respectively, and is adequate for a real-time calf monitoring system.
引用
收藏
页码:1493 / 1508
页数:16
相关论文
共 50 条
  • [31] Using Convolutional Neural Network to Epilepsy Brainwave Recognition
    Tsai, Yi-Hsiu
    Chang, Chin-Hung
    Lin, Yan-Heng
    Chen, Ta-Cheng
    Chen, Chu-Ling
    Jhou, Hong-Jie
    Huang, Wen Chien
    Lin, Fang-Ju
    Shih, Dann-Pyng
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 2233 - 2237
  • [32] Violence recognition using convolutional neural network: A survey
    Tripathi, Gaurav
    Singh, Kuldeep
    Vishwakarma, Dinesh Kumar
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (05) : 7931 - 7952
  • [33] Hand Gesture Recognition Using Convolutional Neural Network
    Ahlawat, Savita
    Batra, Vaibhav
    Banerjee, Snehashish
    Saha, Joydeep
    Garg, Aman K.
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, VOL 2, 2019, 56 : 179 - 186
  • [34] Medication Code Recognition using Convolutional Neural Network
    Zaafouri, Ahmed
    Sayadi, Mounir
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [35] A Multi-Channel and Multi-Scale Convolutional Neural Network for Hand Posture Recognition
    Feng, Jiawen
    Zhang, Limin
    Deng, Xiangyang
    Yu, Zhijun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 785 - 785
  • [36] Human Posture Recognition Using Android Smartphone and Artificial Neural Network
    Idris, Muhammad Irfan
    Zabidi, Azlee
    Yassin, Ihsan Mohd
    Ali, Megat Syahirul Amin Megat
    2015 IEEE 6TH CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM (ICSGRC), 2015, : 120 - 124
  • [37] Facial Expression Recognition using Convolutional Neural Network on Graphs
    Wu, Chenhui
    Chai, Li
    Yang, Jun
    Sheng, Yuxia
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 7572 - 7576
  • [38] Handwritten Tamil Character Recognition using Convolutional Neural Network
    Gnanasivam, P.
    Bharath, G.
    Karthikeyan, V
    Dhivya, V
    2021 SIXTH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2021, : 84 - 88
  • [39] Malayalam Handwritten Character Recognition Using Convolutional Neural Network
    Nair, Pranav P.
    James, Ajay
    Saravanan, C.
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2017, : 278 - 281
  • [40] Handwritten Arabic numerals recognition using convolutional neural network
    Pratik Ahamed
    Soumyadeep Kundu
    Tauseef Khan
    Vikrant Bhateja
    Ram Sarkar
    Ayatullah Faruk Mollah
    Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 5445 - 5457