A review of prospects and current scenarios of biomass co-pyrolysis for water treatment

被引:19
|
作者
Zuhara, Shifa [1 ]
Mackey, Hamish R. [1 ]
Al-Ansari, Tareq [1 ,2 ]
McKay, Gordon [1 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci & Engn, Div Sustainable Dev, Doha, Qatar
[2] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci & Engn, Div Engn Management & Decis Sci, Doha, Qatar
关键词
Co-pyrolysis; Biomass; Activation; Water treatment; Adsorption; MUNICIPAL SEWAGE-SLUDGE; ACTIVATED CARBON; BIOCHAR PRODUCTION; AQUEOUS-SOLUTIONS; HAZELNUT SHELL; HEAVY-METALS; ADSORPTION; REMOVAL; WASTE; KINETICS;
D O I
10.1007/s13399-022-03011-0
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With ever-growing population comes an increase in waste and wastewater generated. There is ongoing research to not only reduce the waste but also to increase its value commercially. One method is pyrolysis, a process that converts wastes, at temperatures usually above 300 degrees C in a pyrolysis unit, to carbon-rich biochars among with other useful products. These chars are known to be beneficial as they can be used for water treatment applications; certain studies also reveal improvements in the biochar quality especially on the surface area and pore volume by imparting thermal and chemical activation methods, which eventually improves the uptake of pollutants during the removal of inorganic and organic contaminants in water. Research based on single waste valorisation into biochar applications for water treatment has been extended and applied to the pyrolysis of two or more feedstocks, termed co-pyrolysis, and its implementation for water treatment. The co-pyrolysis research mainly covers activation, applications, predictive calculations, and modelling studies, including isotherm, kinetic, and thermodynamic adsorption analyses. This paper focuses on the copyrolysis biochar production studies for activated adsorbents, adsorption mechanisms, pollutant removal capacities, regeneration, and real water treatment studies to understand the implementation of these co-pyrolyzed chars in water treatment applications. Finally, some prospects to identify the future progress and opportunities in this area of research are also described. This review provides a way to manage solid waste in a sustainable manner, while developing materials that can be utilized for water treatment, providing a double target approach to pollution management.
引用
收藏
页码:6053 / 6082
页数:30
相关论文
共 50 条
  • [21] Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation
    Gouws, S. M.
    Carrier, Marion
    Bunt, J. R.
    Neomagus, H. W. J. P.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 135
  • [22] Energy recovery and waste treatment using the co-pyrolysis of biomass waste and polymer
    Oh, Seok-Young
    Sohn, Jung-In
    WASTE MANAGEMENT & RESEARCH, 2022, 40 (11) : 1637 - 1644
  • [23] Co-Pyrolysis and Co-Gasification of Biomass and Oil Shale
    Jarvik, Oliver
    Sulg, Mari
    Cirici, Pau Cascante
    Eldermann, Meelis
    Konist, Alar
    Gusca, Julija
    Siirde, Andres
    ENVIRONMENTAL AND CLIMATE TECHNOLOGIES, 2020, 24 (01) : 624 - 637
  • [24] Influence of minerals and added calcium on the pyrolysis and co-pyrolysis of coal and biomass
    Stojanowska, G
    Jones, JM
    JOURNAL OF THE ENERGY INSTITUTE, 2005, 78 (03) : 126 - 138
  • [25] Optimizing pyrolysis and Co-Pyrolysis of plastic and biomass using Artificial Intelligence
    Timilsina, Manish Sharma
    Chaudhary, Yuvraj
    Bhattarai, Prikshya
    Uprety, Bibek
    Khatiwada, Dilip
    ENERGY CONVERSION AND MANAGEMENT-X, 2024, 24
  • [26] Co-pyrolysis of Biomass and Plastics waste: A Modelling Approach
    Oyedun, Adetoyese O.
    Gebreegziabher, Tesfaldet
    Hui, Chi Wai
    16TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION (PRES'13), 2013, 35 : 883 - 888
  • [27] Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer
    Xue, Yuan
    Kelkar, Atul
    Bai, Xianglan
    FUEL, 2016, 166 : 227 - 236
  • [28] Co-pyrolysis of biomass and coal in a free fall reactor
    Zhang, Li
    Xu, Shaoping
    Zhao, Wei
    Liu, Shuqin
    FUEL, 2007, 86 (03) : 353 - 359
  • [29] Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor
    Yang, Xiao
    Yuan, Chengyong
    Xu, Jiao
    Zhang, Weijiang
    BIORESOURCE TECHNOLOGY, 2014, 173 : 1 - 5
  • [30] Recent advances on catalytic co-pyrolysis of biomass and plastic
    Wang Z.
    Guo S.
    Wu M.
    Chen Y.
    Zhao J.
    Li H.
    Lei T.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (05): : 2655 - 2665