A review of prospects and current scenarios of biomass co-pyrolysis for water treatment

被引:19
|
作者
Zuhara, Shifa [1 ]
Mackey, Hamish R. [1 ]
Al-Ansari, Tareq [1 ,2 ]
McKay, Gordon [1 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci & Engn, Div Sustainable Dev, Doha, Qatar
[2] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci & Engn, Div Engn Management & Decis Sci, Doha, Qatar
关键词
Co-pyrolysis; Biomass; Activation; Water treatment; Adsorption; MUNICIPAL SEWAGE-SLUDGE; ACTIVATED CARBON; BIOCHAR PRODUCTION; AQUEOUS-SOLUTIONS; HAZELNUT SHELL; HEAVY-METALS; ADSORPTION; REMOVAL; WASTE; KINETICS;
D O I
10.1007/s13399-022-03011-0
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With ever-growing population comes an increase in waste and wastewater generated. There is ongoing research to not only reduce the waste but also to increase its value commercially. One method is pyrolysis, a process that converts wastes, at temperatures usually above 300 degrees C in a pyrolysis unit, to carbon-rich biochars among with other useful products. These chars are known to be beneficial as they can be used for water treatment applications; certain studies also reveal improvements in the biochar quality especially on the surface area and pore volume by imparting thermal and chemical activation methods, which eventually improves the uptake of pollutants during the removal of inorganic and organic contaminants in water. Research based on single waste valorisation into biochar applications for water treatment has been extended and applied to the pyrolysis of two or more feedstocks, termed co-pyrolysis, and its implementation for water treatment. The co-pyrolysis research mainly covers activation, applications, predictive calculations, and modelling studies, including isotherm, kinetic, and thermodynamic adsorption analyses. This paper focuses on the copyrolysis biochar production studies for activated adsorbents, adsorption mechanisms, pollutant removal capacities, regeneration, and real water treatment studies to understand the implementation of these co-pyrolyzed chars in water treatment applications. Finally, some prospects to identify the future progress and opportunities in this area of research are also described. This review provides a way to manage solid waste in a sustainable manner, while developing materials that can be utilized for water treatment, providing a double target approach to pollution management.
引用
收藏
页码:6053 / 6082
页数:30
相关论文
共 50 条
  • [1] A review of prospects and current scenarios of biomass co-pyrolysis for water treatment
    Shifa Zuhara
    Hamish R. Mackey
    Tareq Al-Ansari
    Gordon McKay
    Biomass Conversion and Biorefinery, 2024, 14 : 6053 - 6082
  • [2] Current status of co-pyrolysis of oil shale and biomass
    Ceron, Alejandro Lyons
    Konist, Alar
    Lees, Heidi
    Jarvik, Oliver
    OIL SHALE, 2021, 38 (03) : 228 - 263
  • [3] A comprehensive review on co-pyrolysis of lignocellulosic biomass and polystyrene
    Anshu, Kumari
    Kenttamaa, Hilkka I.
    Thengane, Sonal K.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 205
  • [4] Co-pyrolysis of polypropylene and biomass
    Ye, J. L.
    Cao, Q.
    Zhao, Y. S.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2008, 30 (18) : 1689 - 1697
  • [5] Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review
    Zhang, Xuesong
    Lei, Hanwu
    Chen, Shulin
    Wu, Joan
    GREEN CHEMISTRY, 2016, 18 (15) : 4145 - 4169
  • [6] Co-pyrolysis of Pingshuo coal and biomass
    Wang, Jian
    Zhang, Shou-Yu
    Guo, Xi
    Dong, Ai-Xia
    Chen, Chuan
    Xiong, Shao-Wu
    Fang, Yi-Tian
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2013, 41 (01): : 67 - 73
  • [7] Co-pyrolysis of Biomass and Pingshuo Coal
    Wang, Jian
    Zhang, Shouyu
    Dong, Aixia
    Guo, Xi
    Chen, Chuan
    Xiong, Shaowu
    2013 INTERNATIONAL CONFERENCE ON MATERIALS FOR RENEWABLE ENERGY AND ENVIRONMENT (ICMREE), VOLS 1-3, 2013, : 694 - 697
  • [8] Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review
    Liu, Junjian
    Hou, Qidong
    Ju, Meiting
    Ji, Peng
    Sun, Qingmei
    Li, Weizun
    CATALYSTS, 2020, 10 (07) : 1 - 26
  • [9] Upgrading of biomass sourced pyrolysis oil review: focus on co-pyrolysis and vapour upgrading during pyrolysis
    Krutof, A.
    Hawboldt, K. A.
    BIOMASS CONVERSION AND BIOREFINERY, 2018, 8 (03) : 775 - 787
  • [10] Upgrading of biomass sourced pyrolysis oil review: focus on co-pyrolysis and vapour upgrading during pyrolysis
    A. Krutof
    K. A. Hawboldt
    Biomass Conversion and Biorefinery, 2018, 8 : 775 - 787