Bearing Fault Diagnosis Method Based on Attention Mechanism and Multi-Channel Feature Fusion

被引:1
|
作者
Gao, Hongfeng [1 ]
Ma, Jie [2 ]
Zhang, Zhonghang [3 ]
Cai, Chaozhi [2 ]
机构
[1] Handan Branch Hebei Special Equipment Supervis & I, Handan 056000, Peoples R China
[2] Hebei Univ Engn, Sch Mech & Equipment Engn, Handan 056038, Hebei, Peoples R China
[3] MCC Baosteel Technol Serv Co Ltd, Shanghai 200941, Peoples R China
关键词
Feature extraction; Time-frequency analysis; Fault diagnosis; Vibrations; Convolutional neural networks; Convolution; Load modeling; Rolling bearings; Rolling bearing; convolutional neural network; feature fusion; attention mechanism;
D O I
10.1109/ACCESS.2024.3381618
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the problems of limited identification accuracy and poor generalization ability of bearing fault diagnosis models, a convolutional neural network model for bearing fault diagnosis based on convolutional block attention module and multi-channel feature fusion (CBAM-MFFCNN) is proposed. The method uses signal processing technology to convert one-dimensional vibration signal into three types of two-dimensional time-frequency images, and constructs a network with multi-channel input to learn the three types of images at the same time. To realize the accurate fault diagnosis of bearings in strong noise environment, the structural parameters of the network are optimized. By adding different degrees of Gaussian white noise to the vibration signal, the convolution kernel size and the step of the first layer of the model are optimized. In order to improve the feature extraction ability and generalization performance of the model, the variable load dataset is constructed for training and testing. Experiments are conducted based on the Case Western Reserve University (CWRU) bearing datasets, the experimental results show that compared with the single channel diagnosis model, CBAM-MFFCNN can not only realize accurate identification of bearing fault, but also achieve 100% identification accuracy in fault degree testing.
引用
收藏
页码:45011 / 45025
页数:15
相关论文
共 50 条
  • [1] A multi-scale feature extraction and fusion method for bearing fault diagnosis based on hybrid attention mechanism
    Meng, Huan
    Zhang, Jiakai
    Zhao, Jingbo
    Wang, Daichao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 31 - 41
  • [2] An improved CNN based on attention mechanism with multi-domain feature fusion for bearing fault diagnosis
    Yu, Mingzhu
    Liu, Heli
    Wang, Rengen
    Kong, Xiangwei
    Hu, Zhiyong
    Li, Xueyi
    2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
  • [3] Attention-Based Bilinear Feature Fusion Method for Bearing Fault Diagnosis
    Wang, Daichao
    Li, Yibin
    Jia, Lei
    Song, Yan
    Wen, Tao
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (03) : 1695 - 1705
  • [4] Bearing fault diagnosis method based on attention mechanism and multilayer fusion network
    Li, Xiaohu
    Wan, Shaoke
    Liu, Shijie
    Zhang, Yanfei
    Hong, Jun
    Wang, Dongfeng
    ISA TRANSACTIONS, 2022, 128 : 550 - 564
  • [5] Adaptive bearing fault diagnosis method of multi-channel correlation
    Gu C.
    Ma Z.
    Wang J.
    Zhang J.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2018, 33 (07): : 1750 - 1757
  • [6] Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
    Zhu, Huibin
    He, Zhangming
    Wei, Juhui
    Wang, Jiongqi
    Zhou, Haiyin
    SENSORS, 2021, 21 (07)
  • [7] Attention mechanism based multi-scale feature extraction of bearing fault diagnosis
    LEI Xue
    LU Ningyun
    CHEN Chuang
    HU Tianzhen
    JIANG Bin
    Journal of Systems Engineering and Electronics, 2023, 34 (05) : 1359 - 1367
  • [8] Attention mechanism based multi-scale feature extraction of bearing fault diagnosis
    Lei, Xue
    Lu, Ningyun
    Chen, Chuang
    Hu, Tianzhen
    Jiang, Bin
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2023, 34 (05) : 1359 - 1367
  • [9] Bearing fault diagnosis based on wavelet adaptive threshold filtering and multi-channel fusion cross-attention neural network
    Zhao, Yunji
    Wei, Sicheng
    Xu, Xiaozhuo
    Review of Scientific Instruments, 2024, 95 (11):
  • [10] Bearing Fault Diagnosis Method Based on EMD and Multi-channel Convolutional Neural Network
    Zhao, Fukai
    Zhen, Dong
    Yu, Xiaopeng
    Liu, Xiaoang
    Hu, Wei
    Ding, Jin
    PROCEEDINGS OF TEPEN 2022, 2023, 129 : 458 - 468