Early detection of late-onset neonatal sepsis from noninvasive biosignals using deep learning: A multicenter prospective development and validation study

被引:3
|
作者
Kallonen, Antti [1 ]
Juutinen, Milla [1 ]
Varri, Alpo
Carrault, Guy [2 ]
Pladys, Patrick [2 ,3 ]
Beuchee, Alain
机构
[1] Tampere Univ, Fac Med & Hlth Technol, FI-33014 Tampere, Finland
[2] Univ Rennes, INSERM, LTSI, UMR 1099, F-35000 Rennes, France
[3] Pediat Dept, CHU Rennes, F-35000 Rennes, France
基金
欧盟地平线“2020”;
关键词
Biosignal processing; Deep learning model; Disease classification; Decision support system; Sepsis;
D O I
10.1016/j.ijmedinf.2024.105366
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background: Neonatal sepsis is responsible for significant morbidity and mortality worldwide. Its accurate and timely diagnosis is hindered by vague symptoms and the urgent necessity for early antibiotic intervention. The gold standard for diagnosing the condition is the identification of a pathogenic organism from normally sterile sites via laboratory testing. However, this method is resource-intensive and cannot be conducted continuously. Objective: This study aimed to predict the onset of late-onset sepsis (LOS) with good diagnostic value as early as possible using non-invasive biosignal measurements from neonatal intensive care unit (NICU) monitors. Methods: In this prospective multicenter study, we developed a multimodal machine learning algorithm based on a convolutional neural network (CNN) structure that uses the power spectral density (PSD) of recorded biosignals to predict the onset of LOS. This approach aimed to discern LOS-related pathogenic spectral signatures without labor-intensive manual artifact removal. Results: The model achieved an area under the receiver operating characteristic score of 0.810 (95 % CI 0.698-0.922) on the validation dataset. With an optimal operating point, LOS detection had 83 % sensitivity and 73 % specificity. The median early detection was 44 h before clinical suspicion. The results highlighted the additive importance of electrocardiogram and respiratory impedance (RESP) signals in improving predictive accuracy. According to a more detailed analysis, the predictive power arose from the morphology of the electrocardiogram's R-wave and sudden changes in the RESP signal. Conclusion: Raw biosignals from NICU monitors, in conjunction with PSD transformation, as input to the CNN, can provide state-of-the-art prediction performance for LOS without the need for artifact removal. To the knowledge of the authors, this is the first study to highlight the independent and additive predictive potential of electrocardiogram R-wave morphology and concurrent, sudden changes in the RESP waveform in predicting the onset of LOS using non-invasive biosignals.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Mannose-Binding Lectin Levels in Late-Onset Sepsis in Preterm Infants: Results from a Prospective Study in a Tertiary Care Center
    Dogan, Pelin
    Ozkan, Hilal
    Koksal, Nilgun
    Oral, Haluk Barbaros
    Celebi, Solmaz
    Bagci, Onur
    Varal, Ipek Guney
    FETAL AND PEDIATRIC PATHOLOGY, 2020, 39 (05) : 363 - 372
  • [32] A deep learning system for detection of early Barrett's neoplasia: a model development and validation study
    Fockens, K. N.
    Jong, M. R.
    Jukema, J. B.
    Boers, T. G. W.
    Kusters, C. H. J.
    van der Putten, J. A.
    Pouw, R. E.
    Duits, L. C.
    Montazeri, N. S. M.
    van Munster, S. N.
    Weusten, B. L. A. M.
    Herrero, L. Alvarez
    Houben, M. H. M. G.
    Nagengast, W. B.
    Westerhof, J.
    Alkhalaf, A.
    Mallant-Hent, R. C.
    Scholten, P.
    Ragunath, K.
    Seewald, S.
    Elbe, P.
    Baldaque-Silva, F.
    Barret, M.
    Fernandez-Sordo, J. Ortiz
    Villarejo, G. Moral
    Pech, O.
    Beyna, T.
    van der Sommen, F.
    de With, P. H.
    de Groof, A. J.
    Bergman, J. J.
    LANCET DIGITAL HEALTH, 2023, 5 (12): : E905 - E916
  • [33] Early prediction of sepsis in intensive care patients using the machine learning algorithm NAVOY® Sepsis, a prospective randomized clinical validation study
    Persson, Inger
    Macura, Andreas
    Becedas, David
    Sjovall, Fredrik
    JOURNAL OF CRITICAL CARE, 2024, 80
  • [34] Late-onset sepsis in very low birth weight neonates: A report from the National Institute of Child Health and Human Development Neonatal Research Network
    Stoll, BJ
    Gordon, T
    Korones, SB
    Shankaran, S
    Tyson, JE
    Bauer, CR
    Fanaroff, AA
    Lemons, JA
    Donovan, EF
    Oh, W
    Stevenson, DK
    Ehrenkranz, RA
    Papile, LA
    Verter, J
    Wright, LL
    JOURNAL OF PEDIATRICS, 1996, 129 (01): : 63 - 71
  • [35] Risk for Late-onset Blood-culture Proven Sepsis in Very-lowbirth Weight Infants Born Small for Gestational Age: A Large Multicenter Study from the German Neonatal Network
    Troeger, Birte
    Goepel, Wolfgang
    Faust, Kirstin
    Mueller, Thilo
    Jorch, Gerhard
    Felderhoff-Mueser, Ursula
    Gortner, Ludwig
    Heitmann, Friedhelm
    Hoehn, Thomas
    Kribs, Angela
    Laux, Reinhard
    Roll, Claudia
    Emeis, Michael
    Moegel, Michael
    Siegel, Jens
    Vochem, Matthias
    von der Wense, Axel
    Wieg, Christian
    Herting, Egbert
    Haertel, Christoph
    PEDIATRIC INFECTIOUS DISEASE JOURNAL, 2014, 33 (03) : 238 - 243
  • [36] Distribution of Pathogens in Early- and Late-Onset Sepsis Among Preterm Infants: A Decade-Long Study in a Tertiary Referral Neonatal Intensive Care Unit
    Muszynska-Radska, Katarzyna
    Szwed, Krzysztof
    Falkowski, Adrian
    Sadowska-Krawczenko, Iwona
    JOURNAL OF CLINICAL MEDICINE, 2025, 14 (01)
  • [37] MULTI-OMICS GUIDED IDENTIFICATION AND VALIDATION OF FECAL BIOMARKERS FOR LATE ONSET NEONATAL SEPSIS IN PRETERM INFANTS IN DUTCH MULTICENTER STUDY INDICATES ELEVATED TRYPTOPHAN METABOLITE PRIOR TO E.COLI SEPSIS ONSET
    Schajik, Yannick V.
    Pitotti, Gemma
    Hakvoort, Theo
    Admiraal, Iris
    Davids, Mark
    Levin, Evgeni
    Niemarkt, Hendrik
    Van Kaam, Anton
    de Boer, Nanne
    Derikx, Joep
    De Meij, Tim
    Gross, Gabriele
    De Jonge, Wouter J.
    Sovran, Bruno
    GASTROENTEROLOGY, 2023, 164 (06) : S722 - S722
  • [38] Development and Validation of an Automated Classification System for Osteonecrosis of the Femoral Head Using Deep Learning Approach: A Multicenter Study
    Shen, Xianyue
    He, Ziling
    Shi, Yi
    Liu, Tong
    Yang, Yuhui
    Luo, Jia
    Tang, Xiongfeng
    Chen, Bo
    Xu, Shenghao
    Zhou, You
    Xiao, Jianlin
    Qin, Yanguo
    JOURNAL OF ARTHROPLASTY, 2024, 39 (02): : 379 - 386.e2
  • [39] Development and validation of a deep learning pipeline to diagnose ovarian masses using ultrasound screening: a retrospective multicenter study
    Dai, Wen-Li
    Wu, Ying-Nan
    Ling, Ya-Ting
    Zhao, Jing
    Zhang, Shuang
    Gu, Zhao-Wen
    Gong, Li-Ping
    Zhu, Man-Ning
    Dong, Shuang
    Xu, Song-Cheng
    Wu, Lei
    Sun, Li-Tao
    Kong, De-Xing
    ECLINICALMEDICINE, 2024, 78
  • [40] Detection of Parechovirus and Enterovirus Among Infants Evaluated for Late-onset Sepsis in the Neonatal Intensive Care Unit: The Viral Respiratory Infections in the Neonatal Intensive Care Unit-Parechovirus-Enterovirus Study
    Sanchez, Pablo J.
    Woods, Reginald A.
    Wang, Huanyu
    Ronchi, Andrea
    Pietrasanta, Carlo
    Michelow, Ian C.
    Mosca, Fabio
    Pugni, Lorenza
    Leber, Amy
    PEDIATRIC INFECTIOUS DISEASE JOURNAL, 2022, 41 (12) : 1017 - 1019