Bi-stable vortex solitons in the nonlinear fractional Schro<spacing diaeresis>dinger equation with Bessel optical lattices

被引:3
|
作者
Yan, Lifen [1 ]
Wang, Mingfeng [1 ]
Zhu, Haiyong [1 ]
机构
[1] Wenzhou Univ, Coll Math & Phys, Wenzhou 325035, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Vortex soliton; Bi-stable; Nonlinear fractional schro center dot dinger equation; Competing cubic-quintic nonlinearities; Bessel lattice; SCHRODINGER-EQUATION; GAP SOLITONS; DYNAMICS;
D O I
10.1016/j.optcom.2023.130219
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the existence and stability of vortex soliton solutions of the nonlinear fractional Schrodinger equation in a competing cubic-quintic medium with an imprinted Bessel optical lattice. Two branches of vortex solitons with a turning point at the threshold of propagation constant were found. Linear stability analysis corroborated by direct propagation simulations reveals that the vortex solitons of the upper branch can be stable in a wide region, while the solitons belonging to the lower branch are always stable above a critical value of the Levy index. Moreover, the existence area of the vortex solitons can be remarkably suppressed by the increase of Levy index.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A high-accuracy conservative numerical scheme for the generalized nonlinear Schro<spacing diaeresis>dinger equation with wave operator
    Pan, Xintian
    AIMS MATHEMATICS, 2024, 9 (10): : 27388 - 27402
  • [42] IMPROVED UNIFORM ERROR BOUND ON THE TIME-SPLITTING METHOD FOR THE LONG-TIME DYNAMICS OF THE FRACTIONAL NONLINEAR SCHRO<spacing diaeresis>DINGER EQUATION
    Feng, Yue
    Ma, Ying
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (01) : 1 - 14
  • [43] BLOW-UP SOLUTIONS FOR NON-SCALE-INVARIANT NONLINEAR SCHRO<spacing diaeresis>DINGER EQUATION IN ONE DIMENSION
    Hamano, Masaru
    Ikeda, Masahiro
    Machihara, Shuji
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2024, 16 (01): : 71 - 83
  • [44] Prediction of soliton evolution and parameters evaluation for a high-order nonlinear Schro<spacing diaeresis>dinger-Maxwell-Bloch equation in the optical fiber
    Hu, Zhonghua
    Yang, Aocheng
    Xu, Suyong
    Li, Nan
    Wu, Qin
    Sun, Yunzhou
    PHYSICS LETTERS A, 2025, 531
  • [45] Multi-peak soliton dynamics and decoherence via the attenuation effects and trapping potential based on a fractional nonlinear Schro<spacing diaeresis>dinger cubic quintic equation in an optical fiber
    Ramli, Marwan
    Ikhwan, Muhammad
    Nazaruddin, Nazaruddin
    Mardi, Harish A.
    Usman, Tarmizi
    Safitri, Evi
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 107 : 507 - 520
  • [46] ERROR ESTIMATES OF THE TIME-SPLITTING METHODS FOR THE NONLINEAR SCHRO<spacing diaeresis>DINGER EQUATION WITH SEMI-SMOOTH NONLINEARITY
    Bao, Weizhu
    Wang, Chushan
    MATHEMATICS OF COMPUTATION, 2024, 93 (348) : 1599 - 1631
  • [47] Construction optical solitons of generalized nonlinear Schro<spacing diaeresis>dinger equation with quintuple power-law nonlinearity using Exp-function, projective Riccati, and new generalized methods
    Samir, Islam
    Ahmed, Hamdy M.
    Rabie, Wafaa
    Abbas, W.
    Mostafa, Ola
    AIMS MATHEMATICS, 2025, 10 (02): : 3392 - 3407
  • [48] Conformable Sumudu Transform Based Adomian Decomposition Method for Linear and Nonlinear Fractional-Order Schro<spacing diaeresis>dinger Equations
    Liaqat, Muhammad Imran
    Aljarrah, Hussam
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 3464 - 3491
  • [49] Solitons unveilings and modulation instability analysis for sixth-order coupled nonlinear Schro<spacing diaeresis>dinger equations in fiber bragg gratings
    Kamel, Noha M.
    Ahmed, Hamdy M.
    Rabie, Wafaa B.
    AIMS MATHEMATICS, 2025, 10 (03): : 6952 - 6980
  • [50] WELL-POSEDNESS OF THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE FOURTH-ORDER NONLINEAR SCHRO spacing diaeresis DINGER EQUATION
    Guo, Boling
    Wu, Jun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (07): : 3749 - 3778