Bi-stable vortex solitons in the nonlinear fractional Schro<spacing diaeresis>dinger equation with Bessel optical lattices

被引:3
|
作者
Yan, Lifen [1 ]
Wang, Mingfeng [1 ]
Zhu, Haiyong [1 ]
机构
[1] Wenzhou Univ, Coll Math & Phys, Wenzhou 325035, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Vortex soliton; Bi-stable; Nonlinear fractional schro center dot dinger equation; Competing cubic-quintic nonlinearities; Bessel lattice; SCHRODINGER-EQUATION; GAP SOLITONS; DYNAMICS;
D O I
10.1016/j.optcom.2023.130219
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the existence and stability of vortex soliton solutions of the nonlinear fractional Schrodinger equation in a competing cubic-quintic medium with an imprinted Bessel optical lattice. Two branches of vortex solitons with a turning point at the threshold of propagation constant were found. Linear stability analysis corroborated by direct propagation simulations reveals that the vortex solitons of the upper branch can be stable in a wide region, while the solitons belonging to the lower branch are always stable above a critical value of the Levy index. Moreover, the existence area of the vortex solitons can be remarkably suppressed by the increase of Levy index.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Propagation of fundamental gap solitons in the fractional Schro<spacing diaeresis>dinger equation with combined linear and nonlinear optical lattices
    Ren, Xiaoping
    Huang, Jing
    OPTICS COMMUNICATIONS, 2024, 561
  • [2] Vector multipole solitons of fractional-order coupled saturable nonlinear Schro<spacing diaeresis>dinger equation
    Xu, Tong-Zhen
    Liu, Jin-Hao
    Wang, Yue-Yue
    Dai, Chao-Qing
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [3] GENERALIZED SOLUTIONS FOR FRACTIONAL SCHRO<spacing diaeresis>DINGER EQUATION
    Benmerrous, A.
    Chadli, L. S.
    Moujahid, A.
    Elomari, M.
    Melliani, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (04): : 1361 - 1373
  • [4] The Cauchy problem for the fractional nonlinear Schro<spacing diaeresis>dinger equation in Sobolev spaces
    Mun, HakBom
    An, JinMyong
    Kim, JinMyong
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (03) : 278 - 293
  • [5] NORMALIZED SOLUTIONS TO FRACTIONAL SCHRO<spacing diaeresis>DINGER EQUATION WITH POTENTIALS
    Liu, Mei-qi
    Zou, Wenming
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023,
  • [6] Stability of a Schro<spacing diaeresis>dinger Equation with Internal Fractional Damping
    Meradjah, Ibrahim
    Louhibi, Naima
    Benaissa, Abbes
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2023, 50 (02): : 427 - 441
  • [7] Numerical simulation of a generalized nonlinear derivative Schro spacing diaeresis dinger equation
    Bian, Shasha
    Pei, Yitong
    Guo, Boling
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 3130 - 3152
  • [8] DYNAMICS OF THE SMOOTH POSITON OF A DERIVATIVE NONLINEAR SCHRO spacing diaeresis DINGER EQUATION
    Dong, Xiaona
    LI, Maohua
    Hu, Aijuan
    Chen, Caifeng
    ROMANIAN JOURNAL OF PHYSICS, 2022, 67 (9-10):
  • [9] Controllable trajectory Hermite-Gaussian vortex beams in nonlinear fractional Schro<spacing diaeresis>dinger systems
    Tan, Chao
    Liang, Yong
    Zou, Min
    Liu, Mingwei
    Zhang, Lifu
    CHAOS SOLITONS & FRACTALS, 2025, 194
  • [10] The control for multiple kinds of solitons generated in the nonlinear fractional Schro<spacing diaeresis>dinger optical system based on Hermite-Gaussian beams
    Tan, Chao
    Liang, Yong
    Zou, Min
    Lei, Tong
    Liu, Mingwei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140