Overcoming scale-up challenges for nanostructured photoelectrodes via one-step interface engineering

被引:0
|
作者
Rodriguez-Gutierrez, Ingrid [1 ,2 ]
Peregrino, Lizandra R. P. [1 ]
Bedin, Karen C. [1 ]
Morishita, Gustavo M. [1 ]
Morais, Gabriel H. [1 ]
Castro, Ricardo H. R. [4 ]
Leite, Edson R. [1 ,5 ]
Souza, Flavio L. [1 ,2 ,3 ]
机构
[1] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Nanotechnol Natl Lab LNNANO, BR-13083970 Campinas, Brazil
[2] Fed Univ ABC UFABC, Ctr Ciencias Nat & Humanas CCNH, BR-09210580 Santo Andre, Brazil
[3] Univ Campinas UNICAMP, Inst Chem, POB 6154, Campinas, SP, Brazil
[4] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA USA
[5] Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Photoelectrochemical cell; Solar to hydrogen conversion; Large area device; Hematite photoelectrode; HYDROGEN-PRODUCTION; GREEN HYDROGEN; SOLAR; EFFICIENT; REACTOR;
D O I
10.1016/j.ijhydene.2024.01.221
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Scaling up photoelectrochemical (PEC) devices for green hydrogen production is a significant challenge that requires robust and cost-effective production methods. In this study, hematite photoelectrodes has been synthesized using a cost-effective polymeric precursor solution, resulting in homogeneous ultra-thin films (similar to 125 nm) with areas up to 200 cm(2). We observed a substantial photocurrent drop as photoelectrode area increases, addressed by modifying the precursor solution with Hf4+. This modification improves the morphology and films adherence, leading to simultaneous grain vertical bar grain interface segregation and a modified FTO vertical bar hematite interface. As a result, film conductivity increases, reducing the photocurrent drop at larger photoelectrode areas. The improved charge separation and surface charge injection efficiencies allows a homogeneous photocurrent of 1.6 mA cm(-2) at 1.45V across a 15.75 m(2) electrode area, using less than 70 mu g of photoactive material. Cost analysis study indicates that this low-energy fabrication method is a significant step forward in green hydrogen production, contributing to sustainable and efficient green hydrogen technologies.
引用
收藏
页码:1138 / 1148
页数:11
相关论文
共 50 条
  • [41] New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach
    Ren, Yingke
    Duan, Bin
    Xu, Yafeng
    Huang, Yang
    Li, Zhaoqian
    Hu, Linhua
    Hayat, Tasawar
    Wang, Hongxia
    Zhu, Jun
    Dai, Songyuan
    SCIENCE CHINA-MATERIALS, 2017, 60 (05) : 392 - 398
  • [42] Engineering Scale-Up Challenges, and effects of SO2 on the Calcium Looping Cycle for Post Combustion CO2 Capture
    Cotton, Alissa
    Patchigolla, Kumar
    Oakey, John E.
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 6404 - 6412
  • [43] Large-Scale Fabrication of In2S3 Porous Films via One-Step Hydrothermal Process
    Chen, Fei
    Deng, Dan
    Lei, Yinlin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (10) : 6928 - 6933
  • [44] Interface and Grain Boundary Passivation by PEA-SCN Double Ions via One-Step Crystal Engineering for All Air-Processed, Stable Perovskite Solar Cells
    Luo, Tianyuan
    Ye, Gang
    Chen, Xiayan
    Ding, Manman
    Ye, Tian
    Zhao, Chunyan
    Zhang, Wenfeng
    Chang, Haixin
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11): : 12290 - 12297
  • [45] One-Step Fabrication of Coconut-Like Capsules via Competitive Reactions at an All-Aqueous Interface for Enzyme Immobilization
    Tang, Qiming
    Deng, Ningjun
    Chen, Jialin
    Sun, Hejia
    Dong, Yuman
    Zeng, Qi
    Yuan, Hao
    Binks, Bernard P.
    Meng, Tao
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (08) : 10621 - 10628
  • [46] High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach
    Li, Weiyang
    Zheng, Guangyuan
    Yang, Yuan
    Seh, Zhi Wei
    Liu, Nian
    Cui, Yi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (18) : 7148 - 7153
  • [47] One-Step Solution Deposition of Antimony Selenoiodide Films via Precursor Engineering for Lead-Free Solar Cell Applications
    Choi, Yong Chan
    Jung, Kang-Won
    NANOMATERIALS, 2021, 11 (12)
  • [48] One-Step Implementation of N-Qubit Nonadiabatic Holonomic Quantum Gates with Superconducting Qubits via Inverse Hamiltonian Engineering
    Kang, Yi-Hao
    Chen, Ye-Hong
    Shi, Zhi-Cheng
    Huang, Bi-Hua
    Song, Jie
    Xia, Yan
    ANNALEN DER PHYSIK, 2019, 531 (07)
  • [49] Large scale preparation of graphene quantum dots from graphite oxide in pure water via one-step electrochemical tailoring
    Deng, Jianhui
    Lu, Qiujun
    Li, Haitao
    Zhang, Youyu
    Yao, Shouzuo
    RSC ADVANCES, 2015, 5 (38): : 29704 - 29707
  • [50] One-step growth of wafer-scale monolayer tungsten disulfide via hydrogen sulfide assisted chemical vapor deposition
    Jia, Zhiyan
    Dong, Jiyu
    Liu, Lixuan
    Xiang, Jianyong
    Nie, Anmin
    Wen, Fusheng
    Mu, Congpu
    Wang, Bochong
    Zhai, Kun
    Yu, Zhipeng
    Kang, Mengke
    Liu, Zhongyuan
    APPLIED PHYSICS LETTERS, 2019, 115 (16)