A parametric study on patch repaired quasi-isotropic laminate in high-velocity impact environment: Experimental and numerical investigation

被引:2
|
作者
Sahoo, Chinmaya Kumar [1 ]
Chennamsetti, Ramadas [2 ]
Arockiarajan, A. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Appl Mech, Chennai, India
[2] DRDO, Res & Dev Estab Engineers, Composites Res Ctr, Pune, India
关键词
ABAQUS-VUMAT; cohesive contact; composite repair; continuum damage mechanics model; high-velocity impact; TENSILE RESPONSE; FAILURE ANALYSIS; DAMAGE; BEHAVIOR; CONFIGURATIONS; HYBRIDIZATION; PERFORMANCE; COMPOSITES; DESIGN;
D O I
10.1002/pc.28239
中图分类号
TB33 [复合材料];
学科分类号
摘要
In this work, the post-repair behavior of a quasi-isotropic laminate was studied in a high-velocity impact environment. The composite laminates were repaired using an external bonded patch repair procedure. Impact tests were performed to understand the effect of patch size and the result of filling the damaged region with a neat epoxy and hardener mixture. Two different size square patches, such as 30 and 50 mm, were used to analyze the effect of patch size. A continuum damage mechanics-based model was developed and incorporated into a finite element model interface to estimate the optimum patch size and patch stacking sequence for the impact environment. In the finite element model, the intralaminar failure criteria were implemented using the ABAQUS-VUMAT user subroutine, and the interlaminar failure criteria were implemented using the inbuilt cohesive contact properties. The 30 mm patch with resin filled in the damaged region performed better than the other combination patches. Also, placing 45 degrees plies toward the outer layer of the patches showed lower damage compared to the patches in which 45 degrees plies were placed at the inner surfaces.Highlights Post-repair impact behavior of repaired laminates was examined. Impact of patch dimension and resin filling in the damaged area was analyzed. A 3-D finite element model was developed to optimize patch parameters. Continuum damage mechanics model has been incorporated with VUMAT subroutine. Interface between lamina has been modeled using cohesive contact. Understanding the effect of patch size, stacking sequence, and resin infill in the impact loading environment. image
引用
收藏
页码:6933 / 6949
页数:17
相关论文
共 50 条
  • [41] Experimental and numerical investigation of the behavior of three-dimensional orthogonal woven composite plates under high-velocity impact
    Su, Hao
    Si, Xuena
    Liu, Yan
    Xu, Ming-ming
    Huang, Guang-yan
    Pan, Jiacong
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2023, 30 (16) : 3293 - 3302
  • [42] Experimental and numerical studies of cylindrical projectile high-velocity impact on steel targets in water
    Guo, Z.
    Xiao, X.
    Zhang, W.
    Mu, Z.
    DYMAT 2009: 9TH INTERNATIONAL CONFERENCE ON THE MECHANICAL AND PHYSICAL BEHAVIOUR OF MATERIALS UNDER DYNAMIC LOADING, VOL 1, 2009, : 421 - 427
  • [43] Numerical Study on the Dynamic Behavior of Layered Structures under High-Velocity Impact
    Park, Seo Hwee
    Seok, Jin Hyeok
    Kim, Yeon Su
    Kim, Yoon A.
    Kumar, Sarath Kumar Satish
    Lee, Taekyung
    Kim, YunHo
    INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2025, 26 (01) : 97 - 107
  • [44] High-velocity impact behavior of sandwich structures with AL faces and foam cores-Experimental and numerical study
    Abbasi, Mohammad
    Nia, Ali Alavi
    AEROSPACE SCIENCE AND TECHNOLOGY, 2020, 105
  • [45] High-velocity impact performance of sandwich panels with additively manufactured hierarchical honeycomb cores: An experimental and numerical study
    Ul Haq, Ahsan
    Narala, Suresh Kumar Reddy
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2024, 26 (04) : 524 - 544
  • [46] Experimental and numerical study on the dynamic response of aluminum alloy wood sandwich panels under high-velocity impact
    Li, Shusen
    Zhang, Yan
    ADVANCES IN MECHANICAL ENGINEERING, 2023, 15 (05)
  • [47] An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches
    Tie, Ying
    Hou, Yuliang
    Li, Cheng
    Zhou, Xihui
    Sapanathan, Thaneshan
    Rachik, Mohamed
    COMPOSITE STRUCTURES, 2018, 190 : 179 - 188
  • [48] Numerical and experimental study of the effect of an edge crack on the vibration characteristics of UD and quasi-isotropic GFRP cantilever composite beam
    Eshete, Mulatu Achenef
    Adimass, Solomon Alemneh
    Paramasivam, Velmurugan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [49] Experimental study of woven-laminates structures subjected to high-velocity impact
    Alonso, Luis
    Navarro, Carlos
    Garcia-Castillo, Shirley K.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2019, 26 (12) : 1001 - 1007
  • [50] An Experimental study of high-velocity impact on aluminum foam composite shield structure
    Li Qingzhen
    Du Zhonghua
    Wang Kangkang
    MATERIAL DESIGN, PROCESSING AND APPLICATIONS, PARTS 1-4, 2013, 690-693 : 20 - +