Detection of the Arabidopsis Proteome and Its Post-translational Modifications and the Nature of the Unobserved (Dark) Proteome in PeptideAtlas

被引:10
|
作者
van Wijk, Klaas J. [3 ]
Leppert, Tami [1 ]
Sun, Zhi [1 ]
Kearly, Alyssa [2 ]
Li, Margaret [1 ]
Mendoza, Luis [1 ]
Guzchenko, Isabell [3 ]
Debley, Erica [3 ]
Sauermann, Georgia [3 ]
Routray, Pratyush [3 ]
Malhotra, Sagunya [1 ]
Nelson, Andrew [2 ]
Sun, Qi [4 ]
Deutsch, Eric W. [1 ]
机构
[1] Inst Syst Biol ISB, Seattle, WA 98109 USA
[2] Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
[3] Cornell Univ, Sch Integrat Plant Sci SIPS, Sect Plant Biol, Ithaca, NY 14853 USA
[4] Cornell Univ, Computat Biol Serv Unit, Ithaca, NY 14853 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Arabidopsis; PeptideAtlas; post-translational modifications; ProteomeXchange; machine learning; signaling peptides; E3; ligases; SPECTROMETRY-BASED ANALYSIS; MASS-SPECTROMETRY; N-TERMINOME; THALIANA; PLANT; IDENTIFICATION; PROTEINS; PHOSPHORYLATION; DATABASE; REVEALS;
D O I
10.1021/acs.jproteome.3c00536
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This study describes a new release of the Arabidopsis thaliana PeptideAtlas proteomics resource (build 2023-10) providing protein sequence coverage, matched mass spectrometry (MS) spectra, selected post-translational modifications (PTMs), and metadata. 70 million MS/MS spectra were matched to the Araport11 annotation, identifying similar to 0.6 million unique peptides and 18,267 proteins at the highest confidence level and 3396 lower confidence proteins, together representing 78.6% of the predicted proteome. Additional identified proteins not predicted in Araport11 should be considered for the next Arabidopsis genome annotation. This release identified 5198 phosphorylated proteins, 668 ubiquitinated proteins, 3050 N-terminally acetylated proteins, and 864 lysine-acetylated proteins and mapped their PTM sites. MS support was lacking for 21.4% (5896 proteins) of the predicted Araport11 proteome: the "dark" proteome. This dark proteome is highly enriched for E3 ligases, transcription factors, and for certain (e.g., CLE, IDA, PSY) but not other (e.g., THIONIN, CAP) signaling peptides families. A machine learning model trained on RNA expression data and protein properties predicts the probability that proteins will be detected. The model aids in discovery of proteins with short half-life (e.g., SIG1,3 and ERF-VII TFs) and for developing strategies to identify the missing proteins. PeptideAtlas is linked to TAIR, tracks in JBrowse, and several other community proteomics resources.
引用
收藏
页码:185 / 214
页数:30
相关论文
共 50 条
  • [21] Whole proteome analysis of post-translational modifications: Applications of mass-spectrometry for proteogenomic annotation
    Gupta, Nitin
    Tanner, Stephen
    Jaitly, Navdeep
    Adkins, Joshua N.
    Lipton, Mary
    Edwards, Robert
    Romine, Margaret
    Osterman, Andrei
    Bafna, Vineet
    Smith, Richard D.
    Pevzner, Pavel A.
    GENOME RESEARCH, 2007, 17 (09) : 1362 - 1377
  • [22] Discover the Post-Translational Modification Proteome Using Mass Spectrometry
    Zhang, Ying
    Fang, Caiyun
    Bao, Huimin
    Yuan, Wenjuan
    Lu, Haojie
    CHINESE JOURNAL OF CHEMISTRY, 2021, 39 (03) : 550 - 558
  • [23] Dataset on post-translational modifications proteome analysis of MSP1-overexpressing rice leaf proteins
    Lee, Gi Hyun
    Min, Cheol Woo
    Jang, Jeong Woo
    Gupta, Ravi
    Kim, Sun Tae
    DATA IN BRIEF, 2023, 50
  • [24] ISPTM: An Iterative Search Algorithm for Systematic Identification of Post-translational Modifications from Complex Proteome Mixtures
    Huang, Xin
    Huang, Lin
    Peng, Hong
    Guru, Ashu
    Xue, Weihua
    Hong, Sang Yong
    Liu, Miao
    Sharma, Seema
    Fu, Kai
    Caprez, Adam P.
    Swanson, David R.
    Zhang, Zhixin
    Ding, Shi-Jian
    JOURNAL OF PROTEOME RESEARCH, 2013, 12 (09) : 3831 - 3842
  • [25] Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies
    Yakubu, Rama R.
    Weiss, Louis M.
    de Monerri, Natalie C. Silmon
    MOLECULAR MICROBIOLOGY, 2018, 107 (01) : 1 - 23
  • [26] Predicting Protein Post-translational Modifications Using Meta-analysis of Proteome Scale Data Sets
    Schwartz, Daniel
    Chou, Michael F.
    Church, George M.
    MOLECULAR & CELLULAR PROTEOMICS, 2009, 8 (02) : 365 - 379
  • [27] Profiling treatment-specific post-translational modifications in a complex proteome with subtractive substrate phage display
    Tenzer, A
    Hofstetter, B
    Sauser, C
    Bodis, S
    Schubiger, AP
    Bonny, C
    Pruschy, M
    PROTEOMICS, 2004, 4 (09) : 2796 - 2804
  • [28] Post-translational Modifications and Mass Spectrometry Detection
    Silva, Andre M. N.
    Vitorino, Rui
    Domingues, M. Rosario M.
    Spickett, Corinne M.
    Domingues, Pedro
    FREE RADICAL BIOLOGY AND MEDICINE, 2013, 65 : 925 - 941
  • [29] CILIARY TUBULIN AND ITS POST-TRANSLATIONAL MODIFICATIONS
    Gaertig, Jacek
    Wloga, Dorota
    CILIARY FUNCTION IN MAMMALIAN DEVELOPMENT, 2008, 85 : 83 - 113
  • [30] Comprehensive data and workflow for mapping global proteome and post-translational modifications in Indian Major Carp, Labeo rohita
    Nissa, Mehar Un
    Banerjee, Anwesha
    Goswami, Mukunda
    Srivastava, Sanjeeva
    DATA IN BRIEF, 2022, 45