Applications of Deep Learning-Based Super-Resolution Networks for AMSR2 Arctic Sea Ice Images

被引:1
|
作者
Feng, Tiantian [1 ,2 ]
Jiang, Peng [1 ,2 ]
Liu, Xiaomin [1 ,2 ]
Ma, Xinyu [1 ,2 ]
机构
[1] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
[2] Tongji Univ, Ctr Spatial Informat & Sustainable Dev Applicat, Shanghai 200092, Peoples R China
基金
美国国家科学基金会;
关键词
arctic sea ice; deep learning; multi-image super-resolution (MISR); passive microwave image; AMSR2; MOTION; VARIABILITY; WATER; EDGE;
D O I
10.3390/rs15225401
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Studies have indicated that the decrease in the extent of Arctic sea ice in recent years has had a significant impact on the Arctic ecosystem and global climate. In order to understand the evolution of sea ice, it is becoming increasingly imperative to have continuous observations of Arctic-wide sea ice with high spatial resolution. Passive microwave sensors have the benefit of being less susceptible to weather, wider coverage, and higher temporal resolution. However, it is challenging to retrieve accurate parameters of sea ice due to the low spatial resolution of passive microwave images. Therefore, improving the spatial resolution of passive microwave images is beneficial for reducing the uncertainty of sea ice parameters. In this paper, four competitive multi-image super-resolution (MISR) networks are selected to explore the applicability of the networks on multi-frequency Advanced Microwave Scanning Radiometer 2 (AMSR2) images of Arctic sea ice. The upsampling factor is set to 4 in the experiment. Firstly, the optimal input lengths of the image sequence for the four MISR networks are found, and then the best network on different frequency band images is further identified. Furthermore, some factors, including seasons, sea ice motion, and polarization mode of images, that may affect the super-resolution (SR) results are analyzed. The experimental results indicate that utilizing images from winter yields superior SR results. Conversely, SR results are the worst during summer across all four MISR networks, exhibiting the largest difference in PSNR of 4.48 dB. Additionally, the SR performance is observed to be better for images with smaller magnitudes of sea ice motion compared to those with larger motions, with the maximum PSNR difference of 2.04 dB. Finally, the SR results for vertically polarized images surpass those for horizontally polarized images, showcasing an average advantage of 4.02 dB in PSNR and 0.0061 in SSIM. In summary, valuable suggestions for selecting MISR models for passive microwave images of Arctic sea ice at different frequency bands are offered in this paper. Additionally, the quantification of the various impact factors on SR performance is also discussed in this paper, which provides insights into optimizing MISR algorithms for passive microwave sea ice imagery.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Deep learning-based point-scanning super-resolution imaging
    Linjing Fang
    Fred Monroe
    Sammy Weiser Novak
    Lyndsey Kirk
    Cara R. Schiavon
    Seungyoon B. Yu
    Tong Zhang
    Melissa Wu
    Kyle Kastner
    Alaa Abdel Latif
    Zijun Lin
    Andrew Shaw
    Yoshiyuki Kubota
    John Mendenhall
    Zhao Zhang
    Gulcin Pekkurnaz
    Kristen Harris
    Jeremy Howard
    Uri Manor
    Nature Methods, 2021, 18 : 406 - 416
  • [32] DEEP LEARNING-BASED SUPER-RESOLUTION ULTRASOUND SPECKLE TRACKING VELOCIMETRY
    Park, Jun Hong
    Choi, Woorak
    Yoon, Gun Young
    Lee, Sang Joon
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (03): : 598 - 609
  • [33] A comprehensive review of deep learning-based single image super-resolution
    Bashir, Syed Muhammad Arsalan
    Wang, Yi
    Khan, Mahrukh
    Niu, Yilong
    PEERJ COMPUTER SCIENCE, 2021,
  • [34] Analysis of AMSR2 89 GHz Measurements over the Arctic Sea Ice in January 2015
    Zabolotskikh, E. V.
    Zhivotovskaya, M. A.
    Zakhvatkina, N. Yu.
    Chapron, B.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 2376 - 2379
  • [35] RESOLUTION ENHANCEMENT OF HYPERSPECTRAL IMAGES USING A LEARNING-BASED SUPER-RESOLUTION MAPPING TECHNIQUE
    Mianji, Fereidoun A.
    Zhang, Ye
    Gu, Yanfeng
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2115 - 2118
  • [36] Super-resolution of brain tumor MRI images based on deep learning
    Zhou, Zhiyi
    Ma, Anbang
    Feng, Qiuting
    Wang, Ran
    Cheng, Lilin
    Chen, Xin
    Yang, Xi
    Liao, Keman
    Miao, Yifeng
    Qiu, Yongming
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (11):
  • [37] Deep learning-based single image super-resolution for low-field MR brain images
    M. L. de Leeuw den Bouter
    G. Ippolito
    T. P. A. O’Reilly
    R. F. Remis
    M. B. van Gijzen
    A. G. Webb
    Scientific Reports, 12
  • [38] An Improved Super-Resolution Algorithm for Infrared Images Based on Deep Learning
    Liu, Yixuan
    Wang, Yousheng
    SECOND INTERNATIONAL CONFERENCE ON OPTICS AND IMAGE PROCESSING (ICOIP 2022), 2022, 12328
  • [39] Data Matching of Solar Images Super-Resolution Based on Deep Learning
    Liu Xiangchun
    Chen Zhan
    Song Wei
    Li Fenglei
    Yang Yanxing
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03): : 4017 - 4029
  • [40] Deep learning-based single image super-resolution for low-field MR brain images
    den Bouter, M. L. de Leeuw
    Ippolito, G.
    O'Reilly, T. P. A.
    Remis, R. F.
    van Gijzen, M. B.
    Webb, A. G.
    SCIENTIFIC REPORTS, 2022, 12 (01)