Tiling Edge-Coloured Graphs with Few Monochromatic Bounded-Degree Graphs

被引:1
|
作者
Corsten, Jan [1 ]
Mendonca, Walner [2 ]
机构
[1] London Sch Econ, Houghton St, London WC2A 2AE, England
[2] IME USP, Rua Matao 1010, BR-05508090 Sao Paulo, Brazil
关键词
Tiling; Complete edge-coloured graph; Bounded-degree graphs; Monochromatic; REGULARITY; CYCLES; LEMMA;
D O I
10.1007/s00493-023-00072-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for all integers Delta, r >= 2, there is a constant C = C(Delta, r) > 0 such that the following is true for every sequence F = {F-1, F-2, ...} of graphs with v(F-n) = n and Delta(F-n) <= Delta, for each n is an element of N. In every r-edge-coloured K-n, there is a collection of at most C monochromatic copies from F whose vertex-sets partition V (K-n). This makes progress on a conjecture of Grinshpun and S & aacute;rk & ouml;zy.
引用
下载
收藏
页码:311 / 335
页数:25
相关论文
共 50 条
  • [31] Properly coloured Hamiltonian cycles in edge-coloured complete graphs
    Allan Lo
    Combinatorica, 2016, 36 : 471 - 492
  • [32] Bounded-Degree Planar Graphs Do Not Have Bounded-Degree Product Structure
    Dujmovic, Vida
    Joret, Gwenael
    Micek, Piotr
    Morin, Pat
    Wood, David R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (02):
  • [33] On induced-universal graphs for the class of bounded-degree graphs
    Esperet, Louis
    Labourel, Arnaud
    Ochem, Pascal
    INFORMATION PROCESSING LETTERS, 2008, 108 (05) : 255 - 260
  • [34] Properly Edge-Coloured Subgraphs in Colourings of Bounded Degree
    Markstrom, Klas
    Thomason, Andrew
    Wagner, Peter
    GRAPHS AND COMBINATORICS, 2011, 27 (02) : 243 - 249
  • [35] Properly Edge-Coloured Subgraphs in Colourings of Bounded Degree
    Klas Markström
    Andrew Thomason
    Peter Wagner
    Graphs and Combinatorics, 2011, 27 : 243 - 249
  • [36] AN ANALOGUE OF QUASI-TRANSITIVITY FOR EDGE-COLOURED GRAPHS
    Duffy, Christopher
    Mullen, Todd
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 1189 - 1215
  • [37] Kernels in edge-coloured orientations of nearly complete graphs
    Galeana-Sanchez, H.
    DISCRETE MATHEMATICS, 2008, 308 (20) : 4599 - 4607
  • [38] Multi-coloured Hamilton cycles in random edge-coloured graphs
    Cooper, C
    Frieze, A
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (02): : 129 - 133
  • [39] A Note on Large Rainbow Matchings in Edge-coloured Graphs
    Lo, Allan
    Tan, Ta Sheng
    GRAPHS AND COMBINATORICS, 2014, 30 (02) : 389 - 393
  • [40] A Note on Large Rainbow Matchings in Edge-coloured Graphs
    Allan Lo
    Ta Sheng Tan
    Graphs and Combinatorics, 2014, 30 : 389 - 393