Build A Module for Improvement Real Time Speech enhancement using Long Short-term Memory Approach

被引:0
|
作者
Van Vo [1 ]
Bach Le Son [2 ]
Huy Vo Phuc [2 ]
机构
[1] FPT Univ, Software Engn Dept, Hanoi, Vietnam
[2] FPT Univ, Informat Technol Specialized Dept, Hanoi, Vietnam
关键词
Speech enhancement; Noise suppression; Deep Learning; Long Short-term Memory; Virtual Call Center; Customer Relationship Management System;
D O I
10.1145/3591569.3591614
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An essential customer experience is required for all businesses today, and customer support as a service brings the right people and processes together. When designing a system for in the context of audio communication for transmission purposes, noise influences must be carefully considered. Improving the quality of phone calls for a smart virtual call center is essential for more effective customer care. This paper proposed a module for improving real-time speech enhancement of phone calls using Long short-term memory (LSTM), an artificial neural network used in the fields of artificial intelligence and deep learning. LSTMs are designed to revoke the long-term dependency issue, remembering information for long periods is generally their default way of behaving. The data set using for this approach is both in English and Vietnamese, the results also improve with evaluation metrics such as PESQ, SI-SDR, STOI.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 50 条
  • [31] Real-time safety monitoring in the induction motor using deep hierarchic long short-term memory
    Kerboua, Adlen
    Metatla, Abderrezak
    Kelaiaia, Ridha
    Batouche, Mohamed
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 99 (9-12): : 2245 - 2255
  • [32] Real-time signal queue length prediction using long short-term memory neural network
    Rezaur Rahman
    Samiul Hasan
    Neural Computing and Applications, 2021, 33 : 3311 - 3324
  • [33] Real-time signal queue length prediction using long short-term memory neural network
    Rahman, Rezaur
    Hasan, Samiul
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (08): : 3311 - 3324
  • [34] Real-Time Crash Risk Prediction using Long Short-Term Memory Recurrent Neural Network
    Yuan, Jinghui
    Abdel-Aty, Mohamed
    Gong, Yaobang
    Cai, Qing
    TRANSPORTATION RESEARCH RECORD, 2019, 2673 (04) : 314 - 326
  • [35] Real-time safety monitoring in the induction motor using deep hierarchic long short-term memory
    Adlen Kerboua
    Abderrezak Metatla
    Ridha Kelaiaia
    Mohamed Batouche
    The International Journal of Advanced Manufacturing Technology, 2018, 99 : 2245 - 2255
  • [36] Long short-term memory
    Hochreiter, S
    Schmidhuber, J
    NEURAL COMPUTATION, 1997, 9 (08) : 1735 - 1780
  • [37] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Lemos Neto, Alvaro C.
    Coelho, Rodrigo A.
    de Castro, Cristiano L.
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (05) : 1457 - 1465
  • [38] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Álvaro C. Lemos Neto
    Rodrigo A. Coelho
    Cristiano L. de Castro
    Journal of Control, Automation and Electrical Systems, 2022, 33 : 1457 - 1465
  • [39] Time Series Analysis of Cryptocurrency Prices Using Long Short-Term Memory
    Fleischer, Jacques Phillipe
    von Laszewski, Gregor
    Theran, Carlos
    Bautista, Yohn Jairo Parra
    ALGORITHMS, 2022, 15 (07)
  • [40] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65