Quantifying emphysema in lung screening computed tomography with robust automated lobe segmentation

被引:0
|
作者
Li, Thomas Z. [1 ,2 ]
Lee, Ho Hin [1 ]
Xu, Kaiwen [3 ]
Gao, Riqiang [3 ]
Dawant, Benoit M. [1 ,3 ,4 ,5 ]
Maldonado, Fabien [6 ]
Sandler, Kim L. [5 ]
Landman, Bennett A. [1 ,3 ,4 ,5 ]
机构
[1] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Sch Med, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Dept Comp Sci, Nashville, TN USA
[4] Vanderbilt Univ, Dept Elect & Comp Engn, Nashville, TN USA
[5] Vanderbilt Univ, Med Ctr, Dept Radiol & Radiol Sci, Nashville, TN USA
[6] Vanderbilt Univ, Med Ctr, Dept Med, Nashville, TN USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Lobar emphysema; lung screening; lung cancer risk; pulmonary lobe segmentation; level set method; AIR-FLOW OBSTRUCTION; QUANTITATIVE EMPHYSEMA; RISK-FACTORS; CANCER; COPD; FEATURES; CHEST;
D O I
10.1117/1.JMI.10.4.044002
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Anatomy-based quantification of emphysema in a lung screening cohort has the potential to improve lung cancer risk stratification and risk communication. Segmenting lung lobes is an essential step in this analysis, but leading lobe segmentation algorithms have not been validated for lung screening computed tomography (CT).Approach In this work, we develop an automated approach to lobar emphysema quantification and study its association with lung cancer incidence. We combine self-supervised training with level set regularization and finetuning with radiologist annotations on three datasets to develop a lobe segmentation algorithm that is robust for lung screening CT. Using this algorithm, we extract quantitative CT measures for a cohort (n = 1189) from the National Lung Screening Trial and analyze the multivariate association with lung cancer incidence.Results Our lobe segmentation approach achieved an external validation Dice of 0.93, significantly outperforming a leading algorithm at 0.90 (p < 0.01). The percentage of low attenuation volume in the right upper lobe was associated with increased lung cancer incidence (odds ratio: 1.97; 95% CI: [1.06, 3.66]) independent of PLCOm2012 risk factors and diagnosis of whole lung emphysema. Quantitative lobar emphysema improved the goodness-of-fit to lung cancer incidence (?(2) = 7.48, p = 0.02).Conclusions We are the first to develop and validate an automated lobe segmentation algorithm that is robust to smoking-related pathology. We discover a quantitative risk factor, lending further evidence that regional emphysema is independently associated with increased lung cancer incidence. The algorithm is provided at https://github.com/MASILab/EmphysemaSeg.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Disproportionate Contribution of Right Middle Lobe to Emphysema and Gas Trapping on Computed Tomography
    Bhatt, Surya P.
    Sieren, Jessica C.
    Newell, John D., Jr.
    Comellas, Alejandro P.
    Hoffman, Eric A.
    [J]. PLOS ONE, 2014, 9 (07):
  • [32] Quantification of pulmonary emphysema from lung computed tomography images
    Uppaluri, R
    Mitsa, T
    Sonka, M
    Hoffman, EA
    McLennan, G
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1997, 156 (01) : 248 - 254
  • [33] Semi-automated micro-computed tomography lung segmentation and analysis in mouse models
    Luisi, Jonathan D.
    Lin, Jonathan L.
    Ochoa, Lorenzo F.
    Mcauley, Ryan J.
    Tanner, Madison G.
    Alfarawati, Obada
    Wright, Casey W.
    Vargas, Gracie
    Motamedi, Massoud
    Ameredes, Bill T.
    [J]. METHODSX, 2023, 10
  • [34] Automated detection and segmentation of non-small cell lung cancer computed tomography images
    Sergey P. Primakov
    Abdalla Ibrahim
    Janita E. van Timmeren
    Guangyao Wu
    Simon A. Keek
    Manon Beuque
    Renée W. Y. Granzier
    Elizaveta Lavrova
    Madeleine Scrivener
    Sebastian Sanduleanu
    Esma Kayan
    Iva Halilaj
    Anouk Lenaers
    Jianlin Wu
    René Monshouwer
    Xavier Geets
    Hester A. Gietema
    Lizza E. L. Hendriks
    Olivier Morin
    Arthur Jochems
    Henry C. Woodruff
    Philippe Lambin
    [J]. Nature Communications, 13
  • [35] Performance Evaluation of Automated Lung Segmentation for High Resolution Computed Tomography (HRCT) Thorax Images
    Noor, Norliza M.
    Than, Joel C. M.
    Rijal, Omar M.
    Kassim, Rosminah M.
    Yunus, Ashari
    [J]. 2015 INTERNATIONAL CONFERENCE ON BIOSIGNAL ANALYSIS, PROCESSING AND SYSTEMS (ICBAPS), 2015,
  • [36] Automated detection and segmentation of non-small cell lung cancer computed tomography images
    Primakov, Sergey P.
    Ibrahim, Abdalla
    van Timmeren, Janita E.
    Wu, Guangyao
    Keek, Simon A.
    Beuque, Manon
    Granzier, Renee W. Y.
    Lavrova, Elizaveta
    Scrivener, Madeleine
    Sanduleanu, Sebastian
    Kayan, Esma
    Halilaj, Iva
    Lenaers, Anouk
    Wu, Jianlin
    Monshouwer, Rene
    Geets, Xavier
    Gietema, Hester A.
    Hendriks, Lizza E. L.
    Morin, Olivier
    Jochems, Arthur
    Woodruff, Henry C.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [37] LUNG DENSITOMETRY BY AXIAL COMPUTED-TOMOGRAPHY IN PATIENTS WITH EMPHYSEMA
    BERGSTERMANN, H
    WESTERBURG, KW
    [J]. ATEMWEGS-UND LUNGENKRANKHEITEN, 1983, 9 (10) : 418 - 423
  • [38] A quantification of the lung surface area in emphysema using computed tomography
    Coxson, HO
    Rogers, RM
    Whittall, KP
    D'Yachkova, Y
    Paré, PD
    Sciurba, FC
    Hogg, JC
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1999, 159 (03) : 851 - 856
  • [39] Lung Nodule Detection in Screening Computed Tomography
    Gori, Ilaria
    Bellotti, Roberto
    Cerello, Piergiorgio
    Cheran, Sorin Cristian
    De Nunzio, Giorgio
    Fantacci, Maria Evelina
    Kasae, Parnian
    Masala, Giovanni Luca
    Martinez, Alessandro Preite
    Retico, Alessandra
    [J]. 2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 3489 - 3491
  • [40] Computed Tomography Screening for Lung Cancer RESPONSE
    Henschke, Claudia I.
    Yip, Rowena
    Yankelevitz, David F.
    Smith, James P.
    [J]. ANNALS OF INTERNAL MEDICINE, 2013, 159 (02) : 156 - 157