Biodistribution and racemization of gut-absorbed l/d-alanine in germ-free mice

被引:6
|
作者
Qiu, Tian [1 ,2 ,4 ]
Lee, Cindy J. [1 ]
Huang, Chen [3 ]
Lee, Dong-Kyu [1 ,5 ]
Rubakhin, Stanislav S. [1 ,2 ,3 ]
Romanova, Elena V. [1 ,2 ,3 ]
Sweedler, Jonathan V. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[3] Univ Illinois, Neurosci Program, Urbana, IL 61801 USA
[4] Michigan State Univ, Dept Chem, E Lansing, MI USA
[5] Chung Ang Univ, Coll Pharm, Seoul, South Korea
基金
美国国家卫生研究院;
关键词
D-AMINO ACIDS; LIQUID-CHROMATOGRAPHY; D-SERINE; PEPTIDE; ISLETS; LANGERHANS; GLYCINE; GROWTH; IDENTIFICATION; ACTIVATION;
D O I
10.1038/s42003-023-05209-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microbial metabolite, d-alanine, cannot be endogenously synthesized by mice, and is instead derived from the food and gut microbiota, with gut-absorbed d-alanine accumulating in the mouse pancreas, brain, and pituitary. Microbiome-derived metabolites are important for the microbiome-gut-brain axis and the discovery of new disease treatments. d-Alanine (d-Ala) is found in many animals as a potential co-agonist of the N-methyl-d-aspartate receptors (NMDAR), receptors widely used in the nervous and endocrine systems. The gut microbiome, diet and putative endogenous synthesis are the potential sources of d-Ala in animals, although there is no direct evidence to show the distribution and racemization of gut-absorbed l-/d-Ala with regards to host-microbe interactions in mammals. In this work, we utilized germ-free mice to control the interference from microbiota and isotopically labeled l-/d-Ala to track their biodistribution and racemization in vivo. Results showed time-dependent biodistribution of gut-absorbed d-Ala, particularly accumulation of gut-absorbed d-Ala in pancreatic tissues, brain, and pituitary. No endogenous synthesis of d-Ala via racemization was observed in germ-free mice. The sources of d-Ala in mice were revealed as microbiota and diet, but not endogenous racemization. This work indicates the importance of further investigating the in vivo biological functions of gut-microbiome derived d-Ala, particularly on NMDAR-related activities, for d-Ala as a potential signaling molecules in the microbiome-gut-brain axis.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice
    Hrncir, Tomas
    Stepankova, Renata
    Kozakova, Hana
    Hudcovic, Tomas
    Tlaskalova-Hogenova, Helena
    BMC IMMUNOLOGY, 2008, 9 (1)
  • [32] Germ-Free Mice Exhibit Mast Cells With Impaired Functionality and Gut Homing and Do Not Develop Food Allergy
    Schwarzer, Martin
    Hermanova, Petra
    Srutkova, Dagmar
    Golias, Jaroslav
    Hudcovic, Tomas
    Zwicker, Christian
    Sinkora, Marek
    Akguen, Johnnie
    Wiedermann, Ursula
    Tuckova, Ludmila
    Kozakova, Hana
    Schabussova, Irma
    FRONTIERS IN IMMUNOLOGY, 2019, 10
  • [33] Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling[S]
    Manca, Claudia
    Boubertakh, Besma
    Leblanc, Nadine
    Deschenes, Thomas
    Lacroix, Sebastien
    Martin, Cyril
    Houde, Alain
    Veilleux, Alain
    Flamand, Nicolas
    Muccioli, Giulio G.
    Raymond, Frederic
    Cani, Patrice
    Di Marzo, Vincenzo
    Silvestri, Cristoforo
    JOURNAL OF LIPID RESEARCH, 2020, 61 (01) : 70 - 85
  • [34] Gut microbial characteristics in poor appetite and undernutrition: a cohort of older adults and microbiota transfer in germ-free mice
    Fluitman, Kristina S.
    Davids, Mark
    Olofsson, Louise E.
    Wijdeveld, Madelief
    Tremaroli, Valentina
    Keijser, Bart J. F.
    Visser, Marjolein
    Backhed, Fredrik
    Nieuwdorp, Max
    IJzerman, Richard G.
    JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, 2022, 13 (04) : 2188 - 2201
  • [35] Dysbiotic human oral microbiota alters systemic metabolism via modulation of gut microbiota in germ-free mice
    Yamazaki, Kyoko
    Miyauchi, Eiji
    Kato, Tamotsu
    Sato, Keisuke
    Suda, Wataru
    Tsuzuno, Takahiro
    Yamada-Hara, Miki
    Sasaki, Nobuo
    Ohno, Hiroshi
    Yamazaki, Kazuhisa
    JOURNAL OF ORAL MICROBIOLOGY, 2022, 14 (01)
  • [36] Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection
    Rawls, John F.
    Mahowald, Michael A.
    Ley, Ruth E.
    Gordon, Jeffrey I.
    CELL, 2006, 127 (02) : 423 - 433
  • [37] Assessment of the Inflammatory Effects of Gut Microbiota from Human Twins Discordant for Ulcerative Colitis on Germ-free Mice
    Knudsen, Lina A.
    Zachariassen, Line S. F.
    Strube, Mikael L.
    Havelund, Jesper F.
    Pilecki, Bartosz
    Nexoe, Anders B.
    Moller, Frederik T.
    Sorensen, Signe B.
    Marcussen, Niels
    Faergeman, Nils J.
    Franke, Andre
    Biol, Dipl
    Bang, Corinna
    Holmskov, Uffe
    Hansen, Axel K.
    Andersen, Vibeke
    COMPARATIVE MEDICINE, 2024, 74 (02) : 55 - 69
  • [38] Fecal microbiota transplant from common variable immunodeficiency patients to germ-free mice recapitulates gut dysbiosis
    Hajjar, Joud
    Voigt, Anita
    Conner, Margaret
    Swennes, Alton
    Walter, Jolan
    Butte, Manish
    Savidge, Tor
    Oh, Julia
    Kheradmand, Farrah
    Petrosino, Joseph
    CLINICAL IMMUNOLOGY, 2023, 250
  • [39] Genetically Obese Human Gut Microbiota Induces Liver Steatosis in Germ-Free Mice Fed on Normal Diet
    Wang, Ruirui
    Li, Hui
    Yang, Xin
    Xue, Xinhe
    Deng, Liman
    Shen, Jian
    Zhang, Menghui
    Zhao, Liping
    Zhang, Chenhong
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [40] Effect of germ-free rearing environment on gut development of larval sea bass (Dicentrarchus labrax L.)
    Rekecki, A.
    Dierckens, K.
    Laureau, S.
    Boon, N.
    Bossier, P.
    Van den Broeck, W.
    AQUACULTURE, 2009, 293 (1-2) : 8 - 15