Heterointerface promoted trifunctional electrocatalysts for all temperature high-performance rechargeable Zn-air batteries

被引:20
|
作者
Wagh, Nayantara K. K. [1 ]
Kim, Dong-Hyung [1 ]
Lee, Chi Ho [2 ]
Kim, Sung-Hae [1 ]
Um, Han-Don [3 ]
Kwon, Joseph Sang-Il [2 ]
Shinde, Sambhaji S. S. [1 ]
Lee, Sang Uck [4 ]
Lee, Jung-Ho [1 ]
机构
[1] Hanyang Univ, Dept Mat Sci & Chem Engn, Ansan, South Korea
[2] Texas A&M Energy Inst, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA
[3] Kangwon Natl Univ, Dept Chem Engn, Chunchon 24341, South Korea
[4] Sungkyunkwan Univ, Sch Chem Engn, 2066 Seobu Ro, Suwon 16419, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
HYDROGEN EVOLUTION REACTION;
D O I
10.1039/d3nh00108c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rational design of wide-temperature operating Zn-air batteries is crucial for their practical applications. However, the fundamental challenges remain; the limitation of the sluggish oxygen redox kinetics, insufficient active sites, and poor efficiency/cycle lifespan. Here we present heterointerface-promoted sulfur-deficient cobalt-tin-sulfur (CoS1-delta/SnS2-delta) trifunctional electrocatalysts by a facile solvothermal solution-phase approach. The CoS1-delta/SnS2-delta displays superb trifunctional activities, precisely a record-level oxygen bifunctional activity of 0.57 V (E-1/2 = 0.90 V and E-j=10 = 1.47 V) and a hydrogen evolution overpotential (41 mV), outperforming those of Pt/C and RuO2. Theoretical calculations reveal the modulation of the electronic structures and d-band centers that endorse fast electron/proton transport for the hetero-interface and avoid the strong adsorption of intermediate species. The alkaline Zn-air batteries with CoS1-delta/SnS2-delta manifest record-high power density of 249 mW cm(-2) and long-cycle life for >1000 cycles under harsh operations of 20 mA cm(-2), surpassing those of Pt/C + RuO2 and previous state-of-the-art catalysts. Furthermore, the solid-state flexible Zn-air battery also displays remarkable performance with an energy density of 1077 Wh kg(-1), >690 cycles for 50 mA cm(-2), and a wide operating temperature from +80 to -40 degrees C with 85% capacity retention, which provides insights for practical Zn-air batteries.
引用
收藏
页码:921 / 934
页数:14
相关论文
共 50 条
  • [31] High-Performance A-Site Deficient Perovskite Electrocatalyst for Rechargeable Zn-Air Battery
    Wang, Chengcheng
    Hou, Bingxue
    Wang, Xintao
    Yu, Zhan
    Luo, Dawei
    Gholizadeh, Mortaza
    Fan, Xincan
    CATALYSTS, 2022, 12 (07)
  • [32] Silk-Derived Highly Active Oxygen Electrocatalysts for Flexible and Rechargeable Zn-Air Batteries
    Wang, Chunya
    Xie, Nan-Hong
    Zhang, Yelong
    Huang, Zhenghong
    Xia, Kailun
    Wang, Huimin
    Guo, Shaojun
    Xu, Bo-Qing
    Zhang, Yingying
    CHEMISTRY OF MATERIALS, 2019, 31 (03) : 1023 - 1029
  • [33] Composition modulation of electrocatalysts based on 3d transition metal towards high-performance Zn-air batteries
    Guo, Ya-Fei
    Liu, Xu
    Yang, Shao-Jie
    Wang, Peng-Fei
    Liu, Zong-Lin
    Zhang, Jun-Hong
    Li, Chun-Sheng
    Shu, Jie
    Yi, Ting-Feng
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [34] Bifunctional air electrodes for flexible rechargeable Zn-air batteries
    Lang, Xiaoling
    Hu, Zhibiao
    Wang, Caiyun
    CHINESE CHEMICAL LETTERS, 2021, 32 (03) : 999 - 1009
  • [35] Bifunctional air electrodes for flexible rechargeable Zn-air batteries
    Xiaoling Lang
    Zhibiao Hu
    Caiyun Wang
    Chinese Chemical Letters, 2021, 32 (03) : 999 - 1009
  • [36] Surface/interface nanoengineering for rechargeable Zn-air batteries
    Zhou, Tianpei
    Zhang, Nan
    Wu, Changzheng
    Xie, Yi
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (04) : 1132 - 1153
  • [37] Biphasic Nanoalloys-Based Trifunctional Monolith for High-Performance Flexible Zn-Air Batteries and Self-Driven Water Splitting
    Yang, Xuhuan
    Mao, Haoning
    Zhou, Zining
    Li, Keer
    Li, Chen
    Ye, Qiong
    Liu, Boping
    Fang, Yueping
    Cai, Xin
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (38)
  • [38] RuCoOx Nanofoam as a High-Performance Trifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries and Water Splitting
    Zhou, Chenhui
    Zhao, Siming
    Meng, Haibing
    Han, Ying
    Jiang, Qinyuan
    Wang, Baoshun
    Shi, Xiaofei
    Zhang, Wenshuo
    Zhang, Liang
    Zhang, Rufan
    NANO LETTERS, 2021, 21 (22) : 9633 - 9641
  • [39] FeCo nanoclusters inserted N,S -doped carbon foams as bifunctional electrocatalyst for high-performance rechargeable Zn-air batteries
    Wang, Minghui
    Wang, Hui
    Ren, Jianwei
    Wang, Xuyun
    Wang, Rongfang
    JOURNAL OF POWER SOURCES, 2022, 538
  • [40] Co, Fe codoped holey carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
    Zhang, Xueting
    Zhu, Zhenye
    Tan, Yuanbo
    Qin, Ke
    Ma, Fei-Xiang
    Zhang, Jiaheng
    CHEMICAL COMMUNICATIONS, 2021, 57 (16) : 2049 - 2052