Smaller embeddings of partial k-star decompositions

被引:0
|
作者
Gunasekara, Ajani De Vas [1 ]
Horsley, Daniel [1 ]
机构
[1] Monash Univ, Sch Math, Melbourne, Vic 3800, Australia
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 01期
基金
澳大利亚研究理事会;
关键词
COMPLETE MULTIGRAPHS; GRAPH;
D O I
10.37236/10759
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A k-star is a complete bipartite graph K1,k. For a graph G, a k-star decomposi-tion of G is a set of k-stars in G whose edge sets partition the edge set of G. If we weaken this condition to only demand that each edge of G is in at most one k-star, then the resulting object is a partial k-star decomposition of G. An embedding of a partial k-star decomposition A of a graph G is a partial k-star decomposition B of another graph H such that A subset of B and G is a subgraph of H. This paper considers the problem of when a partial k-star decomposition of Kn can be embedded in a k -star decomposition of Kn+3 for a given integer s. We improve a result of Noble and Richardson, itself an improvement of a result of Hoffman and Roberts, by showing that any partial k-star decomposition of Kn can be embedded in a k-star decom-position of Kn+3 for some s such that s < 94k when k is odd and s < (6 - 2 root 2)k when k is even. For general k, these constants cannot be improved. We also obtain stronger results subject to placing a lower bound on n.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] The sandwich problem for cutsets:: Clique cutset, k-star cutset
    Teixeira, Rafael B.
    Herrera de Figueiredo, Celina M.
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (13) : 1791 - 1798
  • [32] OBSERVATION OF THE SELECTIVE COUPLING OF K-STAR STATES TO THE K-ETA CHANNEL
    ASTON, D
    AWAJI, N
    BIENZ, T
    BIRD, F
    DAMORE, J
    DUNWOODIE, W
    ENDORF, R
    FUJII, K
    HAYASHII, H
    IWATA, S
    JOHNSON, WB
    KAJIKAWA, R
    KUNZ, P
    LEITH, DWGS
    LEVINSON, L
    MATSUI, T
    MEADOWS, BT
    MIYAMOTO, A
    NUSSBAUM, M
    OZAKI, H
    PAK, CO
    RATCLIFF, BN
    SCHULTZ, D
    SHAPIRO, S
    SHIMOMURA, T
    SINERVO, PK
    SUGIYAMA, A
    SUZUKI, S
    TARNOPOLSKY, G
    TAUCHI, T
    TOGE, N
    UKAI, K
    WAITE, A
    WILLIAMS, S
    PHYSICS LETTERS B, 1988, 201 (01) : 169 - 175
  • [33] SPECTROSCOPY OF THE RAPIDLY ROTATING K-STAR HD-36705
    VILHU, O
    GUSTAFSSON, B
    EDVARDSSON, B
    ASTROPHYSICAL JOURNAL, 1987, 320 (02): : 850 - 861
  • [34] BUAP Performance of K-Star at the INEX'09 Clustering Task
    Pinto, David
    Tovar, Mireya
    Vilarino, Darnes
    Beltran, Beatriz
    Jimenez-Salazar, Hector
    Campos, Basilia
    FOCUSED RETRIEVAL AND EVALUATION, 2010, 6203 : 434 - +
  • [35] Steiner tree in k-star caterpillar convex bipartite graphs: a dichotomy
    D. H. Aneesh
    A. Mohanapriya
    P. Renjith
    N. Sadagopan
    Journal of Combinatorial Optimization, 2022, 44 : 1221 - 1247
  • [36] THE HE-I D3 LINE IN G-STAR AND K-STAR
    WOLFF, SC
    HEASLEY, JN
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 1984, 96 (577) : 231 - 238
  • [38] A linear time approximation scheme for computing geometric maximum k-star
    Jia Wang
    Shiyan Hu
    Journal of Global Optimization, 2013, 55 : 849 - 855
  • [39] Singularly perturbed reaction-diffusion problems on a k-star graph
    Kumar, Vivek
    Leugering, Guenter
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14874 - 14891
  • [40] Steiner tree in k-star caterpillar convex bipartite graphs: a dichotomy
    Aneesh, D. H.
    Mohanapriya, A.
    Renjith, P.
    Sadagopan, N.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (02) : 1221 - 1247