Smaller embeddings of partial k-star decompositions

被引:0
|
作者
Gunasekara, Ajani De Vas [1 ]
Horsley, Daniel [1 ]
机构
[1] Monash Univ, Sch Math, Melbourne, Vic 3800, Australia
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2023年 / 30卷 / 01期
基金
澳大利亚研究理事会;
关键词
COMPLETE MULTIGRAPHS; GRAPH;
D O I
10.37236/10759
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A k-star is a complete bipartite graph K1,k. For a graph G, a k-star decomposi-tion of G is a set of k-stars in G whose edge sets partition the edge set of G. If we weaken this condition to only demand that each edge of G is in at most one k-star, then the resulting object is a partial k-star decomposition of G. An embedding of a partial k-star decomposition A of a graph G is a partial k-star decomposition B of another graph H such that A subset of B and G is a subgraph of H. This paper considers the problem of when a partial k-star decomposition of Kn can be embedded in a k -star decomposition of Kn+3 for a given integer s. We improve a result of Noble and Richardson, itself an improvement of a result of Hoffman and Roberts, by showing that any partial k-star decomposition of Kn can be embedded in a k-star decom-position of Kn+3 for some s such that s < 94k when k is odd and s < (6 - 2 root 2)k when k is even. For general k, these constants cannot be improved. We also obtain stronger results subject to placing a lower bound on n.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Balls, bins, and embeddings of partial k-star designs
    Noble, Matt
    Richardson, Shayne N.
    DISCRETE MATHEMATICS, 2019, 342 (12)
  • [2] Embedding Partial k-Star Designs
    Hoffman, D. G.
    Roberts, Dan
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (04) : 161 - 170
  • [3] RARE DECAY MODES OF K-STAR(1420) AND K-STAR(892)
    JONGEJANS, B
    BLOKZIJL, R
    KLUYVER, JC
    MASSARO, GGG
    VOORTHUIS, H
    CERRADA, M
    GAVILLET, P
    HEMINGWAY, RJ
    LOSTY, MJ
    ENGELEN, JJ
    METZGER, WJ
    POLS, CLA
    FOSTER, B
    MCDOWELL, L
    WELLS, J
    NUCLEAR PHYSICS B, 1978, 139 (04) : 383 - 393
  • [4] K-STAR RESONANCE
    KANAZAWA, A
    TOKUDA, N
    PROGRESS OF THEORETICAL PHYSICS, 1963, 30 (01): : 142 - 143
  • [5] The Polytope of k-star Densities
    Rauh, Johannes
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [6] On k-Star Arboricity of Graphs
    陶昉昀
    林文松
    Journal of Donghua University(English Edition), 2014, 31 (03) : 335 - 338
  • [7] k-path和k-star
    蔡水英
    海峡科学, 2007, (05) : 95 - 96
  • [8] NOTE ON THE K-STAR (730 MEV)
    MINAMI, S
    PROGRESS OF THEORETICAL PHYSICS, 1963, 30 (05): : 722 - 724
  • [9] ALGEBRAIC SURFACES WITH K-STAR ACTION
    ORLIK, P
    WAGREICH, P
    ACTA MATHEMATICA, 1977, 138 (1-2) : 43 - 81
  • [10] CHARACTERISTICS OF K-STAR AND K-STAR PRODUCTION IN KOLP INTERACTIONS BELOW 3 GEV-C
    STUMER, I
    ALEXANDER, G
    BENARY, O
    DAGAN, S
    GRUNHAUS, J
    LISSAUER, D
    OREN, Y
    PUTZER, A
    BARNIR, I
    BURKHARDT, E
    NUCLEAR PHYSICS B, 1974, B 83 (01) : 45 - 59