Retrieval of leaf chlorophyll content in Gannan navel orange based on fusing hyperspectral vegetation indices using machine learning algorithms

被引:0
|
作者
Lian, Suyun [1 ]
Guan, Lixin [1 ]
Peng, Zhongzheng [2 ]
Zeng, Gui [1 ]
Li, Mengshan [1 ]
Xu, Yin [1 ]
机构
[1] Gannan Normal Univ, Intelligent Control Engn & Technol Res Ctr, Gangzhou 341000, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Nanjing, Peoples R China
来源
CIENCIA RURAL | 2023年 / 53卷 / 03期
基金
中国国家自然科学基金;
关键词
chlorophyll content; spectral index; regression; Gannan navel orange; REFLECTANCE;
D O I
10.1590/0103-8478cr20210630
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Estimating leaf chlorophyll contents through leaf reflectance spectra is efficient and nondestructive. The literature base regarding optical indices (particularly chlorophyll indices) is wide ranging and extensive. However, it is without much consensus regarding robust indices for Gannan navel orange. To address this problem, this study investigated the performance of 19 published indices using RDS (raw data spectrum), FDS (first derivative data spectrum) and SDS (second derivative data spectrum) for the estimation of chlorophyll content in navel orange leaves. The single spectral index and combination of multiple spectral indices were compared for their accuracy in predicting chlorophyll a content (Chl(a)), chlorophyll b content (Chl(b)) and total chlorophyll content (Chl(tot)) content in navel orange leaves by using partial least square regression (PLSR), adaboost regression (AR), random forest regression (RFR), decision tree regression (DTR) and support vector machine regression (SVMR) models. Through the comparison of the above data in three datasets, the optimal modeling data set is RDS data, followed by FDS data, and the worst is SDS data. In modeling with multiple spectral indices, good results were obtained for Chl(a) (NDVI750, NDVI800), Chl(b) (Datt, DD, Gitelson 2) and Chl(tot) (Datt, DD, Gitelson2) by corresponding index combinations. Overall, we can find that the AR is also the best regression method judging by prediction performance from the results of single spectral index models and multiple spectral indices models. In comparison, result of multiple spectral indices models is better than single spectral index models in predicting Chl(a) and Chl(tot) content using FDS data and SDS data, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Indices-based approach for crop chlorophyll content retrieval from hyperspectral data
    Haboudane, Driss
    Tremblay, Nicolas
    Vigneault, Philippe
    Miller, John R.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3297 - +
  • [22] Estimation of chlorophyll content in radish leaves using hyperspectral remote sensing data and machine learning algorithms
    Nofrizal, Adenan Yandra
    Sonobe, Rei
    Yamashita, Hiroto
    Ikka, Takashi
    Morita, Akio
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XXIII, 2021, 11856
  • [23] MTCARI: A Kind of Vegetation Index Monitoring Vegetation Leaf Chlorophyll Content Based on Hyperspectral Remote Sensing
    Meng Qing-ye
    Dong Heng
    Qin Qi-ming
    Wang Jin-liang
    Zhao Jiang-hua
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32 (08) : 2218 - 2222
  • [24] Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery
    Narmilan, Amarasingam
    Gonzalez, Felipe
    Salgadoe, Arachchige Surantha Ashan
    Kumarasiri, Unupen Widanelage Lahiru Madhushanka
    Weerasinghe, Hettiarachchige Asiri Sampageeth
    Kulasekara, Buddhika Rasanjana
    REMOTE SENSING, 2022, 14 (05)
  • [25] Hyperspectral reflectance sensing for quantifying leaf chlorophyll content in wasabi leaves using spectral pre-processing techniques and machine learning algorithms
    Sonobe, Rei
    Yamashita, Hiroto
    Mihara, Harumi
    Morita, Akio
    Ikka, Takashi
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (04) : 1311 - 1329
  • [26] Evaluation of Spectral Bandwidth and Position on Leaf Chlorophyll Content Estimation Using Vegetation Indices
    Zhang, Yangyang
    Cao, Jun
    Han, Xu
    Huang, Xiaoxiang
    Yang, Jian
    PHOTOGRAMMETRIC RECORD, 2025, 40 (189):
  • [27] Machine Learning Algorithms for the Retrieval of Canopy Chlorophyll Content and Leaf Area Index of Crops Using the PROSAIL-D Model with the Adjusted Average Leaf Angle
    Sun, Qi
    Jiao, Quanjun
    Chen, Xidong
    Xing, Huimin
    Huang, Wenjiang
    Zhang, Bing
    REMOTE SENSING, 2023, 15 (09)
  • [28] Leaf area index (LAI) prediction using machine learning and UAV based vegetation indices
    Hussain, Saddam
    Teshome, Fitsum T.
    Tulu, Boaz B.
    Awoke, Girma Worku
    Hailegnaw, Niguss Solomon
    Bayabil, Haimanote K.
    EUROPEAN JOURNAL OF AGRONOMY, 2025, 168
  • [29] A Machine Learning Framework to Predict Nutrient Content in Valencia-Orange Leaf Hyperspectral Measurements
    Osco, Lucas Prado
    Marques Ramos, Ana Paula
    Faita Pinheiro, Mayara Maezano
    Saito Moriya, Erika Akemi
    Imai, Nilton Nobuhiro
    Estrabis, Nayara
    Ianczyk, Felipe
    de Araujo, Fabio Fernando
    Liesenberg, Veraldo
    de Castro Jorge, Lucio Andre
    Li, Jonathan
    Ma, Lingfei
    Goncalves, Wesley Nunes
    Marcato Junior, Jose
    Creste, Jose Eduardo
    REMOTE SENSING, 2020, 12 (06)
  • [30] Hyperspectral indices data fusion-based machine learning enhanced by MRMR algorithm for estimating maize chlorophyll content
    Nagy, Attila
    Szabo, Andrea
    Elbeltagi, Ahmed
    Nxumalo, Gift Siphiwe
    Bodi, Erika Budayne
    Tamas, Janos
    FRONTIERS IN PLANT SCIENCE, 2024, 15