A note on the equivalence between the conditional uncorrelation and the independence of random variables

被引:0
|
作者
Jaworski, Piotr [1 ]
Jelito, Damian [2 ]
Pitera, Marcin [2 ]
机构
[1] Univ Warsaw, Inst Math, Warsaw, Poland
[2] Jagiellonian Univ, Inst Math, Krakow, Poland
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 01期
关键词
Correlation; Pearson's correlation; Linear dependence; Zero conditional correlation; Zero conditional covariance; Independence; Linear independence; Local correlation; ZERO CORRELATION; DEPENDENCE;
D O I
10.1214/24-EJS2212
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well known that while the independence of random variables implies zero correlation, the opposite is not true. Namely, uncorrelated random variables are not necessarily independent. In this note we show that the implication could be reversed if we consider the localised version of the correlation coefficient. More specifically, we show that if random variables are conditionally (locally) uncorrelated for any quantile conditioning sets, then they are independent. For simplicity, we focus on the absolutely continuous case. Also, we illustrate potential usefulness of the stated result using multiple examples.
引用
收藏
页码:653 / 673
页数:21
相关论文
共 50 条
  • [31] A CRITERIA FOR INDEPENDENCE OF RANDOM-VARIABLES
    DERAEDT, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (21): : 1021 - 1023
  • [32] Test of independence for Hilbertian random variables
    Banerjee, Bilol
    Ghosh, Anil K.
    STAT, 2022, 11 (01):
  • [33] ON SUMS OF RANDOM-VARIABLES AND INDEPENDENCE
    FLURY, BK
    AMERICAN STATISTICIAN, 1986, 40 (03): : 214 - 215
  • [34] Testing random variables for independence and identity
    Batu, T
    Fischer, E
    Fortnow, L
    Kumar, R
    Rubinfeld, R
    White, P
    42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, : 442 - 451
  • [35] Indistinguishability of particles or independence of the random variables?
    Vincze I.
    Journal of Mathematical Sciences, 1997, 84 (3) : 1190 - 1196
  • [36] A scale of degrees of independence of random variables
    Ostrovska, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (05): : 461 - 471
  • [37] INDEPENDENCE OF EVENTS AND OF RANDOM-VARIABLES
    GELBAUM, BR
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 36 (04): : 333 - 343
  • [38] Conditional Equivalence of Random Systems and Indistinguishability Proofs
    Maurer, Ueli
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 3150 - 3154
  • [39] Testing conditional independence with data missing at random
    LIU Yi
    LIU Xiao-hui
    Applied Mathematics:A Journal of Chinese Universities, 2018, 33 (03) : 298 - 312
  • [40] Testing conditional independence with data missing at random
    Liu Yi
    Liu Xiao-hui
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2018, 33 (03) : 298 - 312