Remark on Cauchy-Schwarz inequality

被引:1
|
作者
Farhadian, Reza [1 ]
机构
[1] Razi Univ, Dept Stat, Kermanshah, Iran
来源
MATHEMATICAL GAZETTE | 2023年 / 107卷 / 570期
关键词
D O I
10.1017/mag.2023.102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
下载
收藏
页码:493 / 495
页数:3
相关论文
共 50 条
  • [31] Cauchy-Schwarz inequality and particle entanglement
    Wasak, T.
    Szankowski, P.
    Zin, P.
    Trippenbach, M.
    Chwedenczuk, J.
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [32] A note on the Cauchy-Schwarz inequality for expectations
    Farhadian, Reza
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (02) : 812 - 813
  • [33] ON A SPECIAL FORM OF THE CAUCHY-SCHWARZ INEQUALITY
    THIELE, L
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1985, 319 (04): : 405 - 412
  • [34] A CAUCHY-SCHWARZ INEQUALITY FOR TRIPLES OF VECTORS
    Arav, Marina
    Hall, Frank J.
    Li, Zhongshan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (04): : 629 - 634
  • [35] THE CAUCHY-SCHWARZ INEQUALITY - A GEOMETRIC PROOF
    CANNON, JW
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (07): : 630 - 631
  • [36] A CAUCHY-SCHWARZ INEQUALITY FOR OPERATORS WITH APPLICATIONS
    BHATIA, R
    DAVIS, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 224 : 119 - 129
  • [37] Bell inequality for qubits based on the Cauchy-Schwarz inequality
    Chen, Jing-Ling
    Deng, Dong-Ling
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [38] REFINEMENTS OF THE CAUCHY-SCHWARZ INEQUALITY FOR τ-MEASURABLE OPERATORS
    Han, Yazhou
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 919 - 931
  • [39] A strengthened Cauchy-Schwarz inequality for biorthogonal wavelets
    De Rossi, A
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1999, 2 (02): : 263 - 282
  • [40] A Cauchy-Schwarz type inequality for fuzzy integrals
    Caballero, J.
    Sadarangani, K.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3329 - 3335