Unrefined low-grade pyrolusite for elemental mercury removal from flue gas: Experimental and DFT insights

被引:1
|
作者
Yu, Qian [1 ,2 ]
Sun, Xin [1 ]
Sun, Menglu [1 ]
Yuan, Bo [1 ,2 ]
Zuo, Xiaomeng [1 ]
Fu, Dong [1 ,2 ]
机构
[1] North China Elect Power Univ, Dept Environm Sci & Engn, Hebei Key Lab Power Plant Flue Gas Multipollutants, Baoding 071003, Peoples R China
[2] North China Elect Power Univ, Coll Environm Sci & Engn, Key Lab Resources & Environm Syst Optimizat, MOE, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-grade pyrolusite; Elemental mercury; Hydrogen chloride; Oxidation and adsorption; SIMULTANEOUS ABSORPTION; OXIDATION-REMOVAL; PHASE OXIDATION; SO2; SURFACE; NOX; REDUCTION; MECHANISM; CATALYSTS; CHLORINE;
D O I
10.1016/j.ces.2023.119689
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Dual characteristics of oxidation capacity and economic advantage endow the unrefined low-grade pyrolusite (LGP) as a potential adsorbent/catalyst. This paper successfully applied it to remove Hg-0 from flue gas, by which 98.6% of removal efficiency was obtained without chemical modification or external oxidant. Effects of various flue gas components on the Hg-0 removal were investigated, and the synchronous improvement in efficiency and stability by HCl was revealed. Also, its reusability was evaluated and the decrease in removal efficiency after 5th cycles is less than 6%. Product analysis indicated that over 90% of Hg-0 was chemisorbed as HgO without HCl, but the presence of HCl reversed the pathway to form HgCl2 that easily escape from the surface, with a proportion of about 95%. By combing experiments, characterizations and theoretical calculations, the mechanism was preliminarily speculated: (i) without HCl, O-2 and the main components of LGP (MnOx, Fe2O3, etc.) involved in the catalytic oxidation according to Mars-Maessen mechanism; (ii) HCl tended to dissociate and adsorb on the MnO2 to form the chlorinated surface, and the mercury removal followed both L-H and E-R mechanism, although E-R was dominant; (iii) the formation of HgCl lowered the energy barrier of HgCl2 desorption, thereby expediting the oxidation-removal of Hg-0.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Gas-phase elemental mercury removal from flue gas by cobalt-modified fly ash at low temperatures
    Xu, Yalin
    Zhong, Qin
    Xing, Lili
    ENVIRONMENTAL TECHNOLOGY, 2014, 35 (22) : 2870 - 2877
  • [22] Oxidative Removal of Elemental Mercury in Flue Gas by DBD Discharge Plasma
    Jiang, Yuze
    An, Jiutao
    Shang, Kefeng
    Lu, Na
    Li, Jie
    Wu, Yan
    ADVANCES IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-6, 2012, 518-523 : 2621 - 2624
  • [23] Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas and natural gas
    Liu, Ting
    Xiong, Zhuo
    Ni, Peng
    Ma, Zizhen
    Tan, Yan
    Li, Zishun
    Deng, Shengnan
    Li, Yincui
    Yang, Qirong
    Zhang, Huawei
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [24] A study on removal of elemental mercury in flue gas using fenton solution
    Liu, Yangxian
    Wang, Yan
    Wang, Qian
    Pan, Jianfeng
    Zhang, Yongchun
    Zhou, Jianfei
    Zhang, Jun
    JOURNAL OF HAZARDOUS MATERIALS, 2015, 292 : 164 - 172
  • [25] Reaction mechanism of NOx removal from flue gas with pyrolusite slurry
    Sun Wei-yi
    Wang Qing-yuan
    Ding Sang-lan
    Su Shi-jun
    Jiang Wen-ju
    Zhu Er-gang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2013, 118 : 576 - 582
  • [26] Recent developments on gas-solid heterogeneous oxidation removal of elemental mercury from flue gas
    Yang, Wei
    Adewuyi, Yusuf G.
    Hussain, Arshad
    Liu, Yangxian
    ENVIRONMENTAL CHEMISTRY LETTERS, 2019, 17 (01) : 19 - 47
  • [27] Experimental study of TiO2 hollow microspheres removal on elemental mercury in simulated flue gas
    Wu, Jiang
    Li, Xian
    Ren, Jianxing
    Qi, Xuemei
    He, Ping
    Ni, Bu
    Zhang, Chong
    Hu, Chengzhen
    Zhou, Jun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 32 : 49 - 57
  • [28] Photochemical removal of mercury from flue gas
    Granite, EJ
    Pennline, HW
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (22) : 5470 - 5476
  • [29] Removal of Elemental Mercury from Flue Gas by Modified Coal-based Activated Carbon
    Li, Yang
    Li, Xiang-Yang
    Huang, Pan
    Lu, Zi-Long
    Zhao, Yong-Chun
    Zhang, Jun-Ying
    Hu, Hao-Quan
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2020, 41 (04): : 1035 - 1041
  • [30] The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas
    Chi, Yao
    Yan, Naiqiang
    Qu, Zan
    Qiao, Shaohua
    Jia, Jinping
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 166 (2-3) : 776 - 781