An Accelerated Convergence Scheme for Solving Stochastic Fractional Diffusion Equation

被引:0
|
作者
Liu, Xing [1 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi, Hubei, Peoples R China
关键词
Accelerated convergence scheme; Temporal approximation; Ito formula; Remainder term; FINITE-ELEMENT DISCRETIZATION; PARTIAL-DIFFERENTIAL-EQUATION; IMPLICIT EULER METHOD; WEAK-CONVERGENCE; APPROXIMATION; SPDES; INTEGRATOR; LAPLACIAN; RATES;
D O I
10.1007/s42967-023-00342-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An accelerated convergence scheme for temporal approximation of stochastic partial differential equation is presented. First, the regularity of the mild solution is provided. Combining the It & ocirc; formula and the remainder term of the exponential Euler scheme, this paper proposes a high accuracy time discretization method. Based on regularity results, a strong convergence rate for the discretization error O(tau(3/2-epsilon)) is proved for arbitrarily small epsilon > 0. Here tau is the uniform time step size. Finally, the theoretical results are verified by several numerical experiments.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [41] A capable numerical meshless scheme for solving distributed order time-fractional reaction-diffusion equation
    Habibirad, Ali
    Azin, Hadis
    Hesameddini, Esmail
    CHAOS SOLITONS & FRACTALS, 2023, 166
  • [42] CONVERGENCE OF A VARIATIONAL LAGRANGIAN SCHEME FOR A NONLINEAR DRIFT DIFFUSION EQUATION
    Matthes, Daniel
    Osberger, Horst
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (03): : 697 - 726
  • [43] Stochastic Operational Matrix Method for Solving Stochastic Differential Equation by a Fractional Brownian Motion
    Mirzaee F.
    Hamzeh A.
    International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 411 - 425
  • [44] Computational scheme for solving nonlinear fractional stochastic differential equations with delay
    Moghaddam, B. P.
    Mendes Lopes, A.
    Tenreiro Machado, J. A.
    Mostaghim, Z. S.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (06) : 893 - 908
  • [45] DEVELOPMENT AND CONVERGENCE ANALYSIS OF A FINITE VOLUME SCHEME FOR SOLVING BREAKAGE EQUATION
    Kumar, Jitendra
    Saha, Jitraj
    Tsotsas, Evangelos
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 1672 - 1689
  • [46] Three-Level Scheme for Solving the Radiation Diffusion Equation
    Chetverushkin, B. N.
    Olkhovskaya, O. G.
    Gasilov, V. A.
    DOKLADY MATHEMATICS, 2023, 108 (01) : 320 - 325
  • [47] Three-Level Scheme for Solving the Radiation Diffusion Equation
    B. N. Chetverushkin
    O. G. Olkhovskaya
    V. A. Gasilov
    Doklady Mathematics, 2023, 108 : 320 - 325
  • [48] On a stochastic nonclassical diffusion equation with standard and fractional Brownian motion
    Caraballo, Tomas
    Tran Bao Ngoc
    Tran Ngoc Thach
    Nguyen Huy Tuan
    STOCHASTICS AND DYNAMICS, 2022, 22 (02)
  • [49] ESTIMATION OF THE HURST AND DIFFUSION PARAMETERS IN FRACTIONAL STOCHASTIC HEAT EQUATION
    Avetisian, D. A.
    Ralchenko, K., V
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 104 : 61 - 76
  • [50] An inverse random source problem in a stochastic fractional diffusion equation
    Niu, Pingping
    Helin, Tapio
    Zhang, Zhidong
    INVERSE PROBLEMS, 2020, 36 (04)