Spherical harmonic coefficients of isotropic polynomial functions with applications to gravity field modeling

被引:1
|
作者
Piretzidis, Dimitrios [1 ,2 ]
Kotsakis, Christopher [3 ]
Mertikas, Stelios P. [2 ]
Sideris, Michael G. [4 ]
机构
[1] Space Geomatica PC, Xanthoudidou 10A, GR-73134 Khania, Greece
[2] Tech Univ Crete, Geodesy & Geomatics Engn Lab, GR-73100 Khania, Greece
[3] Aristotle Univ Thessaloniki, Dept Geodesy & Surveying, GR-54124 Thessaloniki, Greece
[4] Univ Calgary, Dept Geomat Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
关键词
Recurrence relations; Polynomials; Isotropic filtering; B-splines; Covariance functions; GRACE; GRACE-FO; POSITIVE-DEFINITE FUNCTIONS; TRUNCATION; QUADRATURE; LEGENDRE;
D O I
10.1007/s00190-023-01797-z
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Various aspects of gravity field modeling rely upon analytical mathematical functions for calculating spherical harmonic coefficients. Such functions allow quick and efficient evaluation of cumbersome convolution integrals defined on the sphere. In this work, we present a new analytical method for determining spherical harmonic coefficients of isotropic polynomial functions. This method in computationally flexible and efficient, since it makes use of recurrence relations. Also, its use is universal and could be extended to piecewise polynomials and polynomials with compact support. Our numerical investigation of the proposed method shows that certain recurrence relations lose accuracy as the order of implemented polynomials increases because of accumulation of numerical errors. Propagation of these errors could be mitigated by hybrid methods or using extended precision arithmetic. We demonstrate the relevance of our method in gravity field modeling and discuss two areas of application. The first one is the design of B-spline windows and filter kernels for the low-pass filtering of gravity field functionals (e.g., GRACE Follow-On monthly geopotential solutions). The second one is the calculation of spherical harmonic coefficients of isotropic polynomial covariance functions.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission
    Konopliv, Alex S.
    Park, Ryan S.
    Yuan, Dah-Ning
    Asmar, Sami W.
    Watkins, Michael M.
    Williams, James G.
    Fahnestock, Eugene
    Kruizinga, Gerhard
    Paik, Meegyeong
    Strekalov, Dmitry
    Harvey, Nate
    Smith, David E.
    Zuber, Maria T.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2013, 118 (07) : 1415 - 1434
  • [42] Spherical cap harmonic analysis: A comment on its proper use for local gravity field representation
    DeSantis, A
    Torta, JM
    JOURNAL OF GEODESY, 1997, 71 (09) : 526 - 532
  • [43] Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation
    A. De Santis
    J. M. Torta
    Journal of Geodesy, 1997, 71 : 526 - 532
  • [44] Spherical Harmonics; an Elementary Treatise on Harmonic Functions With Applications, 2nd edition
    Eales, Laura A.
    LIBRARY JOURNAL, 1948, 73 (20) : 1670 - 1670
  • [45] Spherical radial basis functions model: approximating an integral functional of an isotropic Gaussian random field
    Chang, Guobin
    Zhang, Xun
    Yu, Haipeng
    JOURNAL OF GEODESY, 2024, 98 (12)
  • [46] Modeling of regional magnetic field applying spherical functions: theoretical aspect
    Sumaruk, Yu P.
    Yankiv-Vitkovska, L. M.
    Dzuman, B. B.
    GEOFIZICHESKIY ZHURNAL-GEOPHYSICAL JOURNAL, 2019, 41 (01): : 180 - 191
  • [47] Modeling of regional magnetic field applying spherical functions: practical aspect
    Sumaruk, Yu. P.
    Yankiv-Vitkovska, L. M.
    Dzuman, B. B.
    GEOFIZICHESKIY ZHURNAL-GEOPHYSICAL JOURNAL, 2019, 41 (06): : 165 - 172
  • [48] Stabilization of Satellite Derived Gravity Field Coefficients by Earth Orientation Parameters and Excitation Functions
    Heiker, Andrea
    Kutterer, Hansjoerg
    Mueller, Juergen
    GEODESY FOR PLANET EARTH: PROCEEDINGS OF THE 2009 IAG SYMPOSIUM, 2012, 136 : 537 - 543
  • [49] Spherical magnetic vortex in a uniform gravity field: A new exact solution and its applications for modeling solar flares and coronal spiders
    A. A. Solovyev
    E. A. Kirichek
    Astronomy Letters, 2011, 37 : 791 - 798
  • [50] Spherical Magnetic Vortex in a Uniform Gravity Field: A New Exact Solution and Its Applications for Modeling Solar Flares and Coronal Spiders
    Solovyev, A. A.
    Kirichek, E. A.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2011, 37 (11): : 791 - 798