Metabarcoding by Combining Environmental DNA with Environmental RNA to Monitor Fish Species in the Han River, Korea

被引:2
|
作者
An, Hyung-Eun [1 ]
Mun, Min-Ho [1 ]
Kim, Chang-Bae [1 ]
机构
[1] Sangmyung Univ, Dept Biotechnol, Seoul 03016, South Korea
关键词
fish; metabarcoding; eDNA; eRNA; monitoring; Han River; Korea;
D O I
10.3390/fishes8110550
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Fishes are ecologically important organisms that have long lifespans, high mobilities, and diverse trophic levels. Due to their importance, fishes are used as bioindicators for monitoring aquatic environments. One method for monitoring fishes is based on environmental DNA (eDNA), which are the deoxynucleic acids released by organisms into the environment. However, there has been a problem with false positives because eDNA is relatively stable in the environment and could even likely represent dead or non-inhabiting organisms. To address this weakness, environmental RNA (eRNA), which degrades more rapidly than eDNA in the environment, can be utilized to complement eDNA. But, to date, few studies have used eRNA for freshwater fish monitoring. In this study, to determine the relative usefulness of eDNA and eRNA metabarcoding in freshwater fishes, we performed eDNA and eRNA metabarcoding on 12S rRNA targeting fish using water samples that were collected from three locations in the Han River. We then calculated the sensitivity and positive predictivity of this approach by comparing our data to the previous specimen capture survey (PSCS) data from the last six years. The results showed that 42 species were detected by eDNA and 19 by eRNA at the three locations. At all locations, compared to the PSCS data, the average sensitivity was higher for eDNA (46.1%) than for eRNA (34.6%), and the average positive predictivity was higher for eRNA (31.7%) than for eDNA (20.7%). This confirmed that eDNA metabarcoding has the advantage of broadly determining species presence or absence (including those that are no longer present or dead), but it also generates false positives; meanwhile, eRNA metabarcoding reports living fish species, but detects fewer species than eDNA. Combining eDNA and eRNA therefore emphasizes their advantages and compensates for their disadvantages, and conducting this may therefore be useful for identifying false positives and monitoring the fish species that are actually present in the environment. This metabarcoding technique can be used in the future to provide insights into the aquatic environment and the monitoring of fisheries.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Evaluating five primer pairs for environmental DNA metabarcoding of Central European fish species based on mock communities
    Macher, Till-Hendrik
    Schuetz, Robin
    Yildiz, Atakan
    Beermann, Arne J.
    Leese, Florian
    METABARCODING AND METAGENOMICS, 2023, 7 : 217 - 245
  • [42] Environmental DNA metabarcoding of pan trap water to monitor arthropod-plant interactions
    Kestel, Joshua H.
    Field, David L.
    Bateman, Philip W.
    White, Nicole E.
    Bell, Karen L.
    Nevill, Paul
    ENVIRONMENTAL DNA, 2024, 6 (02):
  • [43] Key factors to consider in the use of environmental DNA metabarcoding to monitor terrestrial ecological restoration
    van der Heyde, Mieke
    Bunce, Michael
    Nevill, Paul
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 848
  • [44] Environmental DNA metabarcoding primers for freshwater fish detection and quantification: In silico and in tanks
    Shu, Lu
    Ludwig, Arne
    Peng, Zuogang
    ECOLOGY AND EVOLUTION, 2021, 11 (12): : 8281 - 8294
  • [45] Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities
    Miya, Masaki
    ANNUAL REVIEW OF MARINE SCIENCE, 2022, 14 : 161 - 185
  • [46] Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs
    Hayami, Kana
    Sakata, Masayuki K.
    Inagawa, Takashi
    Okitsu, Jiro
    Katano, Izumi
    Doi, Hideyuki
    Nakai, Katsuki
    Ichiyanagi, Hidetaka
    Gotoh, Ryo O.
    Miya, Masaki
    Sato, Hirotoshi
    Yamanaka, Hiroki
    Minamoto, Toshifumi
    ECOLOGY AND EVOLUTION, 2020, 10 (12): : 5354 - 5367
  • [47] Evaluation of Fish Biodiversity in Estuaries Through Environmental DNA Metabarcoding: A Comprehensive Review
    Alenzi, Asma Massad
    FISHES, 2024, 9 (11)
  • [48] Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities
    Hirotoshi Sato
    Yuki Sogo
    Hideyuki Doi
    Hiroki Yamanaka
    Scientific Reports, 7
  • [49] Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities
    Sato, Hirotoshi
    Sogo, Yuki
    Doi, Hideyuki
    Yamanaka, Hiroki
    SCIENTIFIC REPORTS, 2017, 7
  • [50] Assessment of fish biodiversity in four Korean rivers using environmental DNA metabarcoding
    Alam, Md Jobaidul
    Kim, Nack-Keun
    Andriyono, Sapto
    Choi, Hee-kyu
    Lee, Ji-Hyun
    Kim, Hyun-Woo
    PEERJ, 2020, 8