EXPONENTIAL CONVERGENCE TO EQUILIBRIUM FOR COUPLED SYSTEMS OF NONLINEAR DEGENERATE DRIFT DIFFUSION EQUATIONS

被引:1
|
作者
Beck, Lisa [1 ]
Matthes, Daniel [2 ]
Zizza, Martina [3 ]
机构
[1] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
[2] Tech Univ Munich, Zentrum Math M8, D-80538 Garching, Germany
[3] SSISSA ISAS, I-34136 Trieste, TS, Italy
关键词
drift diffusion system; Wasserstein gradient flow; long time asymptotics; exponential convergence; CROSS-DIFFUSION; NONLOCAL INTERACTION; ENTROPY DISSIPATION; EVOLUTION-EQUATIONS; MODEL; FLOWS; MEDIA; DECAY;
D O I
10.1137/21M1466980
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and long-time asymptotics of weak solutions to a system of two nonlinear drift-diffusion equations that has a gradient flow structure in the Wasserstein distance. The two equations are coupled through a cross-diffusion term that is scaled by a parameter \varepsilon\geq 0. The nonlinearities and potentials are chosen such that in the decoupled system for \varepsilon = 0, the evolution is metrically contractive, with a global rate \Lambda > 0\Lambda > 0. The coupling is a singular perturbation in the sense that for any \varepsilon > 0, contractivity of the system is lost. Our main result is that for all sufficiently small \varepsilon > 0, the global attraction to a unique steady state persists, with an exponential rate \Lambda\varepsilon = \Lambda -K\varepsilon for some k > 0. The proof combines results from the theory of metric gradient flows with further variational methods and functional inequalities.
引用
收藏
页码:1766 / 1809
页数:44
相关论文
共 50 条
  • [41] Optimal Non-reversible Linear Drift for the Convergence to Equilibrium of a Diffusion
    T. Lelièvre
    F. Nier
    G. A. Pavliotis
    Journal of Statistical Physics, 2013, 152 : 237 - 274
  • [42] Optimal Non-reversible Linear Drift for the Convergence to Equilibrium of a Diffusion
    Lelievre, T.
    Nier, F.
    Pavliotis, G. A.
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (02) : 237 - 274
  • [43] EXPONENTIAL CONVERGENCE TO EQUILIBRIUM IN A COUPLED GRADIENT FLOW SYSTEM MODELING CHEMOTAXIS
    Zinsl, Jonathan
    Matthes, Daniel
    ANALYSIS & PDE, 2015, 8 (02): : 425 - 466
  • [44] Exponential convergence of nonlinear time-varying differential equations
    M. Errebii
    I. Ellouze
    M. A. Hammami
    Journal of Contemporary Mathematical Analysis, 2015, 50 : 167 - 175
  • [45] Exponential convergence of nonlinear time-varying differential equations
    Errebii, M.
    Ellouze, I.
    Hammami, M. A.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2015, 50 (04): : 167 - 175
  • [46] Exponential convergence to equilibrium for subcritical solutions of the Becker-Doring equations
    Canizo, Jose A.
    Lods, Bertrand
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (05) : 905 - 950
  • [47] Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems
    Fellner, Klemens
    Laamri, El-Haj
    JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (03) : 681 - 704
  • [48] Estimates of Exponential Convergence for Solutions of Stochastic Nonlinear Systems
    Caraballo, Tomas
    Ezzine, Faten
    Hammami, Mohamed Ali
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (02):
  • [49] Estimates of Exponential Convergence for Solutions of Stochastic Nonlinear Systems
    Tomás Caraballo
    Faten Ezzine
    Mohamed Ali Hammami
    Applied Mathematics & Optimization, 2023, 88
  • [50] Recent results on selfsimilar solutions of degenerate nonlinear diffusion equations
    Hulshof, J
    REACTION DIFFUSION SYSTEMS, 1998, 194 : 199 - 215